3,659 research outputs found
The seismic properties of low-mass He-core white dwarf stars
We present here a detailed pulsational study applied to low-mass He-core
white dwarfs, based on full evolutionary models representative of these
objects. The background stellar models on which our pulsational analysis was
carried out were derived by taking into account the complete evolutionary
history of the progenitor stars, with special emphasis on the diffusion
processes acting during the white dwarf cooling phase. We computed nonradial
-modes to assess the dependence of the pulsational properties of these
objects with stellar parameters such as the stellar mass and the effective
temperature, and also with element diffusion processes. We also performed a g-
and p-mode pulsational stability analysis on our models and found well-defined
blue edges of the instability domain, where these stars should start to exhibit
pulsations. We found substantial differences in the seismic properties of white
dwarfs with and the extremely low-mass (ELM) white
dwarfs (). Specifically, -mode pulsation modes
in ELM white dwarfs mainly probe the core regions and are not dramatically
affected by mode-trapping effects by the He/H interface, whereas the opposite
is true for more massive He-core white dwarfs. We found that element diffusion
processes substantially affects the shape of the He/H chemical transition
region, leading to non-negligible changes in the period spectrum of low-mass
white dwarfs. Our stability analysis successfully predicts the pulsations of
the only known variable low-mass white dwarf (SDSS J184037.78+642312.3), and
also predicts both - and -mode pulsational instabilities in a significant
number of known low-mass and ELM white dwarfs.Comment: 14 pages, 15 figures, 2 tables. To be published in Astronomy &
Astrophysic
Filament mechanics in a half-space via regularised Stokeslet segments
We present a generalisation of efficient numerical frameworks for modelling
fluid-filament interactions via the discretisation of a recently-developed,
non-local integral equation formulation to incorporate regularised Stokeslets
with half-space boundary conditions, as motivated by the importance of
confining geometries in many applications. We proceed to utilise this framework
to examine the drag on slender inextensible filaments moving near a boundary,
firstly with a relatively-simple example, evaluating the accuracy of resistive
force theories near boundaries using regularised Stokeslet segments. This
highlights that resistive force theories do not accurately quantify filament
dynamics in a range of circumstances, even with analytical corrections for the
boundary. However, there is the notable and important exception of movement in
a plane parallel to the boundary, where accuracy is maintained. In particular,
this justifies the judicious use of resistive force theories in examining the
mechanics of filaments and monoflagellate microswimmers with planar flagellar
patterns moving parallel to boundaries. We proceed to apply the numerical
framework developed here to consider how filament elastohydrodynamics can
impact drag near a boundary, analysing in detail the complex responses of a
passive cantilevered filament to an oscillatory flow. In particular, we
document the emergence of an asymmetric periodic beating in passive filaments
in particular parameter regimes, which are remarkably similar to the power and
reverse strokes exhibited by motile 9+2 cilia. Furthermore, these changes in
the morphology of the filament beating, arising from the fluid-structure
interactions, also induce a significant increase in the hydrodynamic drag of
the filament.Comment: 21 pages, 9 figures. Supplementary Material available upon reques
Vehicles for the Absorption of Vitamin D In Cystic Fibrosis: Comparison of Powder Vs. Oil
Background: Despite the high prevalence of vitamin D deficiency in cystic fibrosis (CF) populations, there is little consensus on the most efficacious vehicle substance for vitamin D supplements. Given the high prevalence of pancreatic insufficiency in CF, it is possible that resulting fat malabsorption may impede the ability of patients with CF to absorb vitamin D in an oil vehicle. Further investigation is needed to determine the optimal vehicle substance for use in vitamin D supplements. The objective of this pilot study was to compare the absorption of vitamin D3 and to evaluate the rise in serum cholecalciferol (D3) concentrations in response to vitamin D supplements contained in power or oil vehicles. We hypothesized that vitamin D contained in a powder vehicle would be absorbed more efficiently than vitamin D contained in an oil vehicle in patients with CF.
Methods: This was a double blind, randomized control trial conducted in adult patients with CF during a hospitalization for at least 72 hours at Emory University Hospital for an acute CF event. This study was approved by Emory IRB. All subjects gave written informed consent for participation. Eligible subjects included adults with CF over the age of 18. Subjects were excluded on the basis of a history of hypercalciemia, chronic kidney disease (stage 3 or higher), FEV1%2.5 mg/dL, direct bilirubin \u3e 1.0 mg/dL). Subjects were randomized to either a onetime bolus dose of 100,000 IU of vitamin D contained in a powder (BioTech Pharmacal Inc., 50,000IU/tablet, inactive ingredients gelatin: lactose, cellulose and magnesium stearate) or oil-based vehicle substance (Pro-Pharma, LLC ,10,000 IU/tablet, refined soybean oil and glycerin). Serum D3 concentrations were analyzed at baseline, 12, 24, and 48 hours post-treatment and serum 25(OH)D3 was measured at baseline, 12, and 24 hours. Group differences were assessed with repeated measures ANOVA. The area under the curve (AUC) for serum D3 and the individual 12-hr time-point were also assessed as indicators of D3 absorption in group comparisons (Student’s t-test).
Results: This trial was completed by 16 subjects with CF. The mean age, BMI, and FEV1% were 26.2±6.8 yrs., 20.4± 2.4 kg/m2, 63±17%, respectively. The increase in serum vitamin D3 concentrations was greater in the powder group (pgroup*tim
Detections and Constraints on White Dwarf Variability from Time-Series GALEX Observations
We search for photometric variability in more than 23,000 known and candidate
white dwarfs, the largest ultraviolet survey compiled for a single study of
white dwarfs. We use gPhoton, a publicly available calibration/reduction
pipeline, to generate time-series photometry of white dwarfs observed by GALEX.
By implementing a system of weighted metrics, we select sources with
variability due to pulsations and eclipses. Although GALEX observations have
short baselines (< 30 min), we identify intrinsic variability in sources as
faint as Gaia G = 20 mag. With our ranking algorithm, we identify 49 new
variable white dwarfs (WDs) in archival GALEX observations. We detect 41 new
pulsators: 37 have hydrogen-dominated atmospheres (DAVs), including one
possible massive DAV, and four are helium-dominated pulsators (DBVs). We also
detect eight new eclipsing systems; five are new discoveries, and three were
previously known spectroscopic binaries. We perform synthetic injections of the
light curve of WD 1145+017, a system with known transiting debris, to test our
ability to recover similar systems. We find that the 3{\sigma} maximum
occurrence rate of WD 1145+017-like transiting objects is < 0.5%.Comment: 17 pages, 13 figure
Precise Atmospheric Parameters for the Shortest Period Binary White Dwarfs: Gravitational Waves, Metals, and Pulsations
We present a detailed spectroscopic analysis of 61 low mass white dwarfs and
provide precise atmospheric parameters, masses, and updated binary system
parameters based on our new model atmosphere grids and the most recent
evolutionary model calculations. For the first time, we measure systematic
abundances of He, Ca and Mg for metal-rich extremely low mass white dwarfs and
examine the distribution of these abundances as a function of effective
temperature and mass. Based on our preliminary results, we discuss the
possibility that shell flashes may be responsible for the presence of the
observed He and metals. We compare stellar radii derived from our spectroscopic
analysis to model-independent measurements and find good agreement except for
those white dwarfs with Teff < 10,000 K. We also calculate the expected
gravitational wave strain for each system and discuss their significance to the
eLISA space-borne gravitational wave observatory. Finally, we provide an update
on the instability strip of extremely low mass white dwarf pulsators.Comment: 18 pages, 13 figures, 3 tables, accepted for publication in Ap
A New Timescale for Period Change in the Pulsating DA White Dwarf WD 0111+0018
We report the most rapid rate of period change measured to date for a
pulsating DA (hydrogen atmosphere) white dwarf (WD), observed in the 292.9 s
mode of WD 0111+0018. The observed period change, faster than 10^{-12} s/s,
exceeds by more than two orders of magnitude the expected rate from cooling
alone for this class of slow and simply evolving pulsating WDs. This result
indicates the presence of an additional timescale for period evolution in these
pulsating objects. We also measure the rates of period change of nonlinear
combination frequencies and show that they share the evolutionary
characteristics of their parent modes, confirming that these combination
frequencies are not independent modes but rather artifacts of some nonlinear
distortion in the outer layers of the star.Comment: 10 pages, 6 figures, accepted for publication in The Astrophysical
Journa
- …