25,060 research outputs found

    Coherent and generalized intelligent states for infinite square well potential and nonlinear oscillators

    Full text link
    This article is an illustration of the construction of coherent and generalized intelligent states which has been recently proposed by us for an arbitrary quantum system [1][ 1] . We treat the quantum system submitted to the infinite square well potential and the nonlinear oscillators. By means of the analytical representation of the coherent states \`{a} la Gazeau-Klauder and those \`{a} la Klauder-Perelomov, we derive the generalized intelligent states in analytical ways

    Globalization, Glocalization, or Global Studies: What\u27s in a Name?

    Get PDF
    It is only in the concluding section of a painstaking article on the life and time of global studies that Nederveen Pieterse comes to make peace with the competing terminologies and says: \u27The issu..

    Proper Size of the Visible Universe in FRW Metrics with Constant Spacetime Curvature

    Full text link
    In this paper, we continue to examine the fundamental basis for the Friedmann-Robertson-Walker (FRW) metric and its application to cosmology, specifically addressing the question: What is the proper size of the visible universe? There are several ways of answering the question of size, though often with an incomplete understanding of how far light has actually traveled in reaching us today from the most remote sources. The difficulty usually arises from an inconsistent use of the coordinates, or an over-interpretation of the physical meaning of quantities such as the so-called proper distance R(t)=a(t)r, written in terms of the (unchanging) co-moving radius r and the universal expansion factor a(t). In this paper, we use the five non-trivial FRW metrics with constant spacetime curvature (i.e., the static FRW metrics, but excluding Minkowski) to prove that in static FRW spacetimes in which expansion began from an initial signularity, the visible universe today has a proper size equal to R_h(t_0/2), i.e., the gravitational horizon at half its current age. The exceptions are de Sitter and Lanczos, whose contents had pre-existing positions away from the origin. In so doing, we confirm earlier results showing the same phenomenon in a broad range of cosmologies, including LCDM, based on the numerical integration of null geodesic equations through an FRW metric.Comment: Accepted for publication in Classical and Quantum Gravit

    Transport theory yields renormalization group equations

    Full text link
    We show that dissipative transport and renormalization can be described in a single theoretical framework. The appropriate mathematical tool is the Nakajima-Zwanzig projection technique. We illustrate our result in the case of interacting quantum gases, where we use the Nakajima-Zwanzig approach to investigate the renormalization group flow of the effective two-body interaction.Comment: 11 pages REVTeX, twocolumn, no figures; revised version with additional examples, to appear in Phys. Rev.

    Contact Discontinuities in Models of Contact Binaries Undergoing Thermal Relaxation Oscillations

    Get PDF
    In this paper we pursue the suggestion by Shu, Lubow & Anderson (1979) and Wang (1995) that contact discontinuity (DSC) may exist in the secondary in the expansion TRO (thermal relaxation oscillation) state. It is demonstrated that there is a mass exchange instability in some range of mass ratio for the two components. We show that the assumption of {\it constant} volume of the secondary should be relaxed in DSC model. For {\it all} mass ratio the secondary alway satisfies the condition that no mass flow returns to the primary through the inner Lagrangian point. The secondary will expand in order to equilibrate the interaction between the common convective envelope and the secondary. The contact discontinuity in contact binary undergoing thermal relaxation does not violate the second law of thermodynamics. The maintaining condition of contact discontinuity is derived in the time-dependent model. It is desired to improve the TRO model with the advanced contact discontinuity layer in future detailed calculations.Comment: 5 pages in emulateapj, 1 figur

    Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility

    Full text link
    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal of Instrumentation (JINST), including corrected Fig. 8b

    Remarks on the Extended Characteristic Uncertainty Relations

    Get PDF
    Three remarks concerning the form and the range of validity of the state-extended characteristic uncertainty relations (URs) are presented. A more general definition of the uncertainty matrix for pure and mixed states is suggested. Some new URs are provided.Comment: LaTex, 4 pages, no figure

    Closed Trapped Surfaces in Cosmology

    Full text link
    The existence of closed trapped surfaces need not imply a cosmological singularity when the spatial hypersurfaces are compact. This is illustrated by a variety of examples, in particular de Sitter spacetime admits many closed trapped surfaces and obeys the null convergence condition but is non-singular in the k=+1 frame.Comment: 11 pages. To appear in GRG, Vol 35 (August issue

    Seeking Evolution of Dark Energy

    Get PDF
    We study how observationally to distinguish between a cosmological constant (CC) and an evolving dark energy with equation of state ω(Z)\omega(Z). We focus on the value of redshift Z* at which the cosmic late time acceleration begins and a¨(Z∗)=0\ddot{a}(Z^{*}) = 0. Four ω(Z)\omega(Z) are studied, including the well-known CPL model and a new model that has advantages when describing the entire expansion era. If dark energy is represented by a CC model with ω≡−1\omega \equiv -1, the present ranges for ΩΛ(t0)\Omega_{\Lambda}(t_0) and Ωm(t0)\Omega_m(t_0) imply that Z* = 0.743 with 4% error. We discuss the possible implications of a model independent measurement of Z* with better accuracy.Comment: 9 pages, LaTeX, 5 figure

    The Evolution of the M-sigma Relation

    Full text link
    (Abridged) We examine the evolution of the black hole mass - stellar velocity dispersion (M-sigma) relation over cosmic time using simulations of galaxy mergers that include feedback from supermassive black hole growth. We consider mergers of galaxies varying the properties of the progenitors to match those expected at redshifts z=0-6. We find that the slope of the resulting M-sigma relation is the same at all redshifts considered. For the same feedback efficiency that reproduces the observed amplitude of the M-sigma relation at z=0, there is a weak redshift-dependence to the normalization that results from an increasing velocity dispersion for a given galactic stellar mass. We develop a formalism to connect redshift evolution in the M-sigma relation to the scatter in the local relation at z=0. We show that the scatter in the local relation places severe constraints on the redshift evolution of both the normalization and slope of the M-sigma relation. Furthermore, we demonstrate that cosmic downsizing introduces a black hole mass-dependent dispersion in the M-sigma relation and that the skewness of the distribution about the locally observed M-sigma relation is sensitive to redshift evolution in the normalization and slope. In principle, these various diagnostics provide a method for differentiating between theories for producing the M-sigma relation. In agreement with existing constraints, our simulations imply that hierarchical structure formation should produce the relation with small intrinsic scatter.Comment: 12 pages, 6 figures, version accepted by Ap
    • …
    corecore