8,230 research outputs found
Determination of the number of atoms trapped in an optical cavity
The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from Ngreater than or equal to 3 to N=2-->1-->0 atoms, with some trapping events lasting over 1 s
Cavity QED "By The Numbers"
The number of atoms trapped within the mode of an optical cavity is
determined in real time by monitoring the transmission of a weak probe beam.
Continuous observation of atom number is accomplished in the strong coupling
regime of cavity quantum electrodynamics and functions in concert with a
cooling scheme for radial atomic motion. The probe transmission exhibits sudden
steps from one plateau to the next in response to the time evolution of the
intracavity atom number, from N >= 3 to N = 2 to 1 to 0, with some trapping
events lasting over 1 second.Comment: 5 pages, 4 figure
Learning Design: reflections on a snapshot of the current landscape
The mounting wealth of open and readily available information and the swift evolution of social, mobile and creative technologies warrant a re-conceptualisation of the role of educators: from providers of knowledge to designers of learning. This need is being addressed by a growing trend of research in Learning Design. Responding to this trend, the Art and Science of Learning Design workshop brought together leading voices in the field and provided a forum for discussing its key issues. It focused on three thematic axes: practices and methods, tools and resources, and theoretical frameworks. This paper reviews some definitions of Learning Design and then summarises the main contributions to the workshop. Drawing upon these, we identify three key challenges for Learning Design that suggest directions for future research
Seed conservation in ex situ genebanks - genetic studies on longevity in barley
Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs
State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity
Single Cesium atoms are cooled and trapped inside a small optical cavity by
way of a novel far-off-resonance dipole-force trap (FORT), with observed
lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via
transmission of a strongly coupled probe beam, with individual events lasting ~
1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby
monitored in real time. Trapping, cooling, and interactions with strong
coupling are enabled by the FORT potential, for which the center-of-mass motion
is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let
alpha-nucleus potentials for the neutron-deficient p nuclei
alpha-nucleus potentials are one important ingredient for the understanding
of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical
gamma-process where these p nuclei are produced by a series of (gamma,n),
(gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus
potential at the astrophysically relevant sub-Coulomb energies which is derived
from the analysis of alpha decay data and from a previously established
systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.
Large HAWT wake measurement and analysis
From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of spatially diverse wind turbines
Characterization of Knots and Links Arising From Site-specific Recombination on Twist Knots
We develop a model characterizing all possible knots and links arising from
recombination starting with a twist knot substrate, extending previous work of
Buck and Flapan. We show that all knot or link products fall into three
well-understood families of knots and links, and prove that given a positive
integer , the number of product knots and links with minimal crossing number
equal to grows proportionally to . In the (common) case of twist knot
substrates whose products have minimal crossing number one more than the
substrate, we prove that the types of products are tightly prescribed. Finally,
we give two simple examples to illustrate how this model can help determine
previously uncharacterized experimental data.Comment: 32 pages, 7 tables, 27 figures, revised: figures re-arranged, and
minor corrections. To appear in Journal of Physics
Clarification of the relationship between bound and scattering states in quantum mechanics: Application to 12C + alpha
Using phase-equivalent supersymmetric partner potentials, a general result
from the inverse problem in quantum scattering theory is illustrated, i.e.,
that bound-state properties cannot be extracted from the phase shifts of a
single partial wave, as a matter of principle. In particular, recent R-matrix
analyses of the 12C + alpha system, extracting the asymptotic normalization
constant of the 2+ subthreshold state, C12, from the l=2 elastic-scattering
phase shifts and bound-state energy, are shown to be unreliable. In contrast,
this important constant in nuclear astrophysics can be deduced from the
simultaneous analysis of the l=0, 2, 4, 6 partial waves in a simplified
potential model. A new supersymmetric inversion potential and existing models
give C12=144500+-8500 fm-1/2.Comment: Expanded version (50% larger); three errors corrected (conversion of
published reduced widths to ANCs); nine references added, one remove
- …