160 research outputs found

    SLC66 Lysosomal amino acid transporters in GtoPdb v.2021.2

    Get PDF
    This is a family of 5 evolutionarily related proteins. Their structural similarities suggest that they are transporters. Biochemical evidence supports transporter activity for SLC66A1 (LAAT1) and SLC66A4 (CTNS; Cystinosin). The functions of the 3 remaining members of the family are undetermined

    Systematic in silico discovery of novel solute carrier-like proteins from proteomes.

    Get PDF
    Solute carrier (SLC) proteins represent the largest superfamily of transmembrane transporters. While many of them play key biological roles, their systematic analysis has been hampered by their functional and structural heterogeneity. Based on available nomenclature systems, we hypothesized that many as yet unidentified SLC transporters exist in the human genome, which await further systematic analysis. Here, we present criteria for defining "SLC-likeness" to curate a set of "SLC-like" protein families from the Transporter Classification Database (TCDB) and Protein families (Pfam) databases. Computational sequence similarity searches surprisingly identified ~120 more proteins in human with potential SLC-like properties compared to previous annotations. Interestingly, several of these have documented transport activity in the scientific literature. To complete the overview of the "SLC-ome", we present an algorithm to classify SLC-like proteins into protein families, investigating their known functions and evolutionary relationships to similar proteins from 6 other clinically relevant experimental organisms, and pinpoint structural orphans. We envision that our work will serve as a stepping stone for future studies of the biological function and the identification of the natural substrates of the many under-explored SLC transporters, as well as for the development of new therapeutic applications, including strategies for personalized medicine and drug delivery

    SLC66 Lysosomal amino acid transporters in GtoPdb v.2023.1

    Get PDF
    This is a family of 5 evolutionarily related proteins. Their structural similarities suggest that they are transporters. Biochemical evidence supports transporter activity for SLC66A1 (LAAT1) and SLC66A4 (CTNS; Cystinosin), primarily exporting amino acids from the lysosome to the cytoplasm. The functions of the 3 remaining members of the family are undetermined

    Transporter-Mediated Drug Delivery

    Get PDF
    Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters

    Nonlinear effects of food aggregation on interference competition in mallards

    Get PDF
    Previous studies of interference competition have shown an asymmetric effect on intake rate of foragers on clumped resources, with only subordinate individuals suffering. However, the food distributions in these studies were uniform or highly clumped, whereas in many field situations, food aggregation is intermediate. Here we investigated whether food distribution (i.e., uniform, slightly clumped, and highly clumped) affects the behavioral response of mallards foraging alone or competing with another. Although the amount of food was the same in all distributions, the mallards reached higher intake rates, visited fewer patches, and showed longer average feeding times in the highly clumped distribution. Competing mallards had lower intake rates on the slightly clumped than on the uniform or highly clumped food distributions. Subordinates generally visited more patches and had shorter feeding times per patch, but their intake rates were not significantly lower than those of dominants. Therefore, we propose that subordinates do not necessarily suffer from interference competition in terms of intake rate, but do suffer higher search costs. In addition, although dominants had significantly higher average feeding times on the best quality patches of the highly clumped food distribution, such an effect was not found in the slightly clumped distribution. These findings indicate that in environments where food is aggregated to a lesser extent, monopolization is not the best strategy for dominants. Our results suggest that interference experiments should use food distributions that resemble the natural situation animals are faced with in the field

    How Much Is Winning a Matter of Luck? A Comparison of 3 Ă— 3 and 5v5 Basketball

    Get PDF
    Background: The comparison of team sports based on luck has a long tradition and remains unsolved. A contrast between the new Olympic format three-on-three (3 × 3) and five-on-five (5v5) forms of basketball has never been analyzed and provides a comparison within the same form of sports. Methods: We developed a new method to calculate performance indicators for each team and invented the Relative Score Difference Index, a new competitive balance indicator that allows the comparison of luck in the two basketball forms for both men and women. We collected game-level data about 3 × 3 and 5v5 from the World Cups held between 2010 and 2019 (N = 666). Luck was defined as the difference between the expected and the actual outcomes of games. Using the basketball World Cup data, we applied the Surprise Index, ran probit regression models, and compared the basketball forms on the goodness-of-fit of the models. Results: As we predicted, there are differential effects of luck between game formats and sex, such that the 3 × 3 form depends more on luck and women’s games are less influenced by luck when compared to men’s games. Conclusion: Coaches may better understand the differences between the two forms and sexes regarding luck if they are aware that the 3 × 3 and men’s competitions are usually more influenced by luck. The findings provide a leverage point for testing new performances and competition balance indicators and will acknowledge the number of games we enjoy watching

    The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches

    Get PDF
    The SLC9 gene family encodes Na(+)/H(+) exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets

    A Possible Role of Elevated Breast Milk Lactoferrin and the Cytokine IL-17 Levels in Predicting Early Allergy in Infants: A Pilot Study

    Get PDF
    In this study, we examined the relationship between levels of lactoferrin (LF) and IL-17 in human serum and breast milk and the development of allergy in children. LF and IL-17 levels were determined by ELISA in healthy (n=19) and allergic mothers (n=21) on the 5th day after delivery. Two years later, information on breastfeeding and allergic outcomes was collected by questionnaires from parents of both groups and district child care nurses. Significantly higher concentrations of LF were found in the breast milk of allergic mothers compared to the healthy controls. At 2 years of age, only those three infants became allergic from the atopic group in whose starting breast milk samples a very high LF level (306 μg mg–1 protein) or simultaneously elevated concentrations of LF and IL-17 were measured. These findings indicate that the very early measurement of LF and IL-17 levels in the breast milk of allergic mothers may help to predict the allergy development in their infants

    The mechanism of the reverse recovery-step, phosphate release, and actin activation of Dictyostelium myosin II.

    Get PDF
    The rate-limiting step of the myosin basal ATPase (i.e. in absence of actin) is assumed to be a post-hydrolysis swinging of the lever arm (reverse recovery step), that limits the subsequent rapid product release steps. However, direct experimental evidence for this assignment is lacking. To investigate the binding and the release of ADP and phosphate independently from the lever arm motion, two single tryptophan-containing motor domains of Dictyostelium myosin II were used. The single tryptophans of the W129+ and W501+ constructs are located at the entrance of the nucleotide binding pocket and near the lever arm, respectively. Kinetic experiments show that the rate-limiting step in the basal ATPase cycle is indeed the reverse recovery step, which is a slow equilibrium step (k(forward) = 0.05 s(-1), k(reverse) = 0.15 s(-1)) that precedes the phosphate release step. Actin directly activates the reverse recovery step, which becomes practically irreversible in the actin-bound form, triggering the power stroke. Even at low actin concentrations the power stroke occurs in the actin-attached states despite the low actin affinity of myosin in the pre-power stroke conformation
    • …
    corecore