24 research outputs found

    Melanoma Inhibitory Activity (MIA) increases the invasiveness of pancreatic cancer cells

    Get PDF
    BACKGROUND: Melanoma inhibitory activity (MIA) is a small secreted protein that interacts with extracellular matrix proteins. Its over-expression promotes the metastatic behavior of malignant melanoma, thus making it a potential prognostic marker in this disease. In the present study, the expression and functional role of MIA was analyzed in pancreatic cancer by quantitative real-time PCR (QRT-PCR), immunohistochemistry, immunoblot analysis and ELISA. To determine the effects of MIA on tumor cell growth and invasion, MTT cell growth assays and modified Boyden chamber invasion assays were used. RESULTS: The mRNA expression of MIA was 42-fold increased in pancreatic cancers in comparison to normal pancreatic tissues (p < 0.01). In contrast, MIA serum levels were not significantly different between healthy donors and pancreatic cancer patients. In pancreatic tissues, MIA was predominantly localized in malignant cells and in tubular complexes of cancer specimens, whereas normal ductal cells, acinar cells and islets were devoid of MIA immunoreactivity. MIA significantly promoted the invasiveness of cultured pancreatic cancer cells without influencing cell proliferation. CONCLUSION: MIA is over-expressed in pancreatic cancer and has the potential of promoting the invasiveness of pancreatic cancer cells

    Aberrant overexpression of an epithelial marker, 14-3-3σ, in a subset of hematological malignancies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>14-3-3σ is a p53-mediated cell-cycle inhibitor in epithelial cells. The expression of 14-3-3σ is frequently altered in cancers of epithelial origin associated with altered DNA methylation. Since its involvement in a non-epithelial tumor is unknown, we examined 14-3-3σ expression in patients with haematological malignancies.</p> <p>Methods</p> <p>We analyzed 41 hematopoietic cell lines and 129 patients with a variety of hematological malignancies for 14-3-3σ expression with real-time RT-PCR. We also examined protein levels by Western blot analysis and DNA methylation status of the 14-3-3σ gene by methylation-specific PCR analysis of bisulfite-treated DNA. In addition, mutations of p53 gene were identified by RT-PCR-SSCP analysis and the expression levels of 14-3-3σ were compared with those of other cell-cycle inhibitor genes, CDKN2A and ARF.</p> <p>Results</p> <p>The expression levels of 14-3-3σ mRNA in almost all cell lines were low and comparable to those in normal hematopoietic cells except for 2 B-cell lines. On the contrary, 14-3-3σ mRNA was aberrantly overexpressed frequently in mature lymphoid malignancies (30 of 93, 32.3%) and rarely in acute leukemia (3 of 35, 8.6%). 14-3-3σ protein was readily detectable and roughly reflected the mRNA level. In contrast to epithelial tumors, methylation status of the 14-3-3σ gene was not associated with expression in hematological malignancies. Mutations of p53 were identified in 12 patients and associated with lower expression of 14-3-3σ. The expression levels of 14-3-3σ, CDKN2A and ARF were not correlated with but rather reciprocal to one another, suggesting that simultaneous overexpression of any two of them is incompatible with tumor growth.</p> <p>Conclusion</p> <p>14-3-3σ, an epithelial cell marker, was overexpressed significantly in a subset of mature lymphoid malignancies. This is the first report of aberrant 14-3-3σ expression in non-epithelial tumors <it>in vivo</it>. Since the significance of 14-3-3σ overexpression is unknown even in epithelial tumors such as pancreatic cancers, further analysis of regulation and function of the 14-3-3σ gene in non-epithelial as well as epithelial tumors is warranted.</p

    Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer

    Get PDF
    Recent evidence suggests that Runt-related transcription factors play a role in different human tumours. In the present study, the localisation of the Runt-related transcription factor-2 (Runx2), its transcriptional activity, as well as its regulation of expression was analysed in human pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time PCR and immunohistochemistry were used for Runx2 expression and localisation analysis. Runt-related transcription factor-2 expression was silenced using specific siRNA oligonucleotides in pancreatic cancer cells (Panc-1) and immortalised pancreatic stellate cells (IPSCs). Overexpression of Runx2 was achieved using a full-length expression vector. TGF-β1, BMP2, and other cytokines were assessed for their potential to regulate Runx2 expression. There was a 6.1-fold increase in median Runx2 mRNA levels in PDAC tissues compared to normal pancreatic tissues (P<0.0001). Runt-related transcription factor-2 was localised in pancreatic cancer cells, tubular complexes, and PanIN lesions of PDAC tissues as well as in tumour-associated fibroblasts/stellate cells. Coculture of IPSCs and Panc-1 cells, as well as treatment with TGF-β1 and BMP2, led to increased Runx2 expression in Panc-1 cells. Runt-related transcription factor-2 overexpression was associated with decreased MMP1 release as well as decreased growth and invasion of Panc-1 cells. These effects were reversed by Runx2 silencing. In conclusion, Runx2 is overexpressed in PDAC, where it is regulated by certain cytokines such as TGF-β1 and BMP2 in an auto- and paracrine manner. In addition, Runx2 has the potential to regulate the transcription of extracellular matrix modulators such as SPARC and MMP1, thereby influencing the tumour microenvironment

    SPARC: a matricellular regulator of tumorigenesis

    Get PDF
    Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature

    RUNX3 expression in primary and metastatic pancreatic cancer

    No full text
    Aim: Runx transcription factors are important regulators of lineage specific gene expression, cell proliferation, and differentiation. Runx3 expression is lost in a high proportion of gastric cancers, suggesting a tumour suppressive role in this malignancy. This study investigates the expression and localisation of Runx3 in pancreatic tissues. Methods: Quantitative polymerase chain reaction was used to measure Runx3 mRNA. Immunohistochemistry was carried out to localise Runx3 in normal pancreatic tissues, and in primary and metastatic pancreatic ductal adenocarcinoma (PDAC). Basal and transforming growth factor β1 (TGFβ1) induced Runx3 expression was analysed in cultured pancreatic cancer cell lines. Results: Runx3 expression was low to absent in normal pancreatic tissues, but increased in a third of cancer tissues. Runx3 was present only in islets in normal pancreas, whereas in pancreatic cancers, Runx3 was detected in the cancer cells of seven of 24 samples analysed. In addition, it was expressed by lymphocytes in six of the 16 cases with lymphocyte infiltration. In pancreatic cancer cell lines, Runx3 mRNA was present in Colo-357 and T3M4 cells, but was low to absent in the other cell lines tested. TGFβ1 repressed Runx3 mRNA expressed in Colo-357 cells, and had no effect on Runx3 expression in the other pancreatic cancer cell lines. Conclusion: Runx3 expression is restricted to islets in the normal pancreas. In contrast, a considerable proportion of pancreatic tumours express Runx3, and its expression is localised in the tumour cells and in the infiltrating lymphocytes. Thus, Runx3 might play a role in the pathogenesis of PDAC

    Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis

    No full text
    Background: Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. Aims: In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. Materials and Methods: 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. Results: CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. Conclusion: These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP
    corecore