191 research outputs found

    Epstein-Barr Virus-Encoded BARF1 Protein is a Decoy Receptor for Macrophage Colony Stimulating Factor and Interferes with Macrophage Differentiation and Activation

    Get PDF
    Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus BARF1 was expressed in the human 293 cell line and purified. This native hexameric sBARF1 had inhibitory capacity on macrophage colony stimulating factor (M-CSF)-stimulated, and not on granulocyte macrophage-colony stimulating factor (GM-CSF)-stimulated growth and differentiation of myeloid cells. Antibodies specific to hexameric sBARF1 were able to block this effect. M-CSF was shown to interact with sBARF1 via the protruding N-terminal loops involving Val38 and Ala84. Each BARF1 hexamer was capable of binding three M-CSF dimers. Mutations in the BARF1 loops greatly affected M-CSF interaction, and showed loss of growth inhibition. Analysis of the activation state of the M-CSF receptor c-fms and its downstream kinase pathways showed that sBARF1 prevented M-CSF-induced downstream phosphorylation. Since M-CSF is an important factor in macrophage differentiation, the effect of sBARF1 on the function of monocyte-derived macrophages was evaluated. sBARF1 affected overall survival and morphology and significantly reduced expression of macrophage differentiation surface markers such as CD14, CD11b, CD16, and CD169. Macrophages differentiating in the presence of sBARF1 showed impaired responses to lipopolysaccharide and decreased oxygen radical formation as well as reduced phagocytosis of apoptotic cells. In conclusion, EBV sBARF1 protein is a potent decoy receptor for M-CSF, hampering the function and differentiation of macrophages. These results suggest that sBARF1 contributes to the modulation of immune responses in the microenvironment of EBV-positive carcinoma

    Inhibition of HIF-1α by the anticancer drug TAS106 enhances X-ray-induced apoptosis in vitro and in vivo

    Get PDF
    In a previous study, we showed that a novel anticancer drug, 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine (TAS106, ECyd) increased the antitumour efficacy of X-irradiation. However, its effects on hypoxic cells in tumours remain unclarified. Here, we show that TAS106 enhances the induction of apoptosis in X-irradiated human gastric adenocarcinoma MKN45 and MKN28 cells under hypoxia in vitro. At the same time, the accumulation of HIF-1α observed under hypoxia was shown to be decreased to the level of normoxia in the presence of 0.1 μM TAS106. To study the function of HIF-1α protein in apoptosis of hypoxic cells, we employed an HIF-1α reductive approach using its specific antisense oligodeoxynucleotide. The reduction of HIF-1α gene expression dramatically enhanced X-ray-induced apoptosis in hypoxic cells. In in vivo experiments in which MKN45 cells were transplanted into severe combined immunodeficient (SCID) mice, TAS106 (0.5 mg kg−1) suppressed HIF-1α expression and subsequently reduced the area of the hypoxic region in the tumour and enhanced the induction of apoptosis in the hypoxic region when combined with 2 Gy of X-irradiation. These results suggest the possibility that TAS106 acts as a potent radiosensitiser through the inhibition of HIF-1α expression and can be a useful agent against radiotherapy-resistant hypoxic cells in solid tumours

    Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum

    Get PDF
    Expression of the transcription factor hypoxia-inducible factor 1 (HIF-1), which plays a key role in cellular adaptation to hypoxia, was investigated in normal colorectal mucosa (ten), adenomas (61), and carcinomas (23). Tissue samples were analyzed for HIF-1α, its upstream regulators, von Hippel–Lindau factor, AKT, and mammalian target of rapamycin (mTOR) and its downstream targets glucose transporter 1 (GLUT1), carbonic anhydrase IX, stromal-cell-derived factor 1 (SDF-1) by immunohistochemistry. In normal colorectal mucosa, HIF-1α was observed in almost all nuclei of surface epithelial cells, probably secondary to a gradient of oxygenation, as indicated by pimonidazole staining. The same staining pattern was present in 87% of adenomas. In carcinomas, HIF-1α was present predominantly around areas of necrosis (78%). Active AKT and mTOR, were present in all adenomas, carcinomas, and in normal colorectal mucosa. GLUT1 and SDF-1 were present in the normal surface epithelium of all adenoma cases, whereas in the carcinoma GLUT1 was located around necrotic regions and SDF-1 was present in all epithelial cells. In conclusion, HIF-1α appears to be physiologically expressed in the upper part of the colorectal mucosa. The present observations support that upregulation of HIF-1α and its downstream targets GLUT1 and SDF-1 in colorectal adenomas and carcinomas may be due to hypoxia, in close interaction with an active phosphatidylinositol 3-kinases–AKT–mTOR pathway

    Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer

    Get PDF
    <p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p> <p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α.</p> <p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p&gt

    Necrosis related HIF-1α expression predicts prognosis in patients with endometrioid endometrial carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia inducible factor 1α (HIF-1α) plays an essential role in the adaptive response of cells to hypoxia and is associated with aggressive tumour behaviour. We have shown p27<sup>kip1</sup>, which is generally reduced in endometrial cancer, to be re-expressed in hypoxic regions. This possibly contributes to survival of cancer cells. The aim of this study was to evaluate the prognostic value of HIF-1α and p27<sup>kip </sup>expression in patients with endometrioid endometrial cancer.</p> <p>Methods</p> <p>Expression levels of HIF-1α, CAIX, Glut-1, and p27<sup>kip1 </sup>were analyzed by immunohistochemistry. Percentage of positive cells, staining pattern (perinecrotic, diffuse, or mixed) and presence of necrosis were noted.</p> <p>Results</p> <p>Necrosis was correlated with shortened disease free survival (DFS) (p <it>= </it>0.008) and overall survival (OS) (p <it>= </it>0.045). For DFS, perinecrotic HIF-1α expression was also prognostic (p <it>= </it>0.044). Moreover, high p27<sup>kip1 </sup>expression was an additional prognostic factor for these patients with perinecrotic HIF-1α expression. In multivariate Cox regression, perinecrotic HIF-expression emerged as an independent prognostic factor. Perinecrotic HIF-1α expression was significantly associated with CAIX and Glut-1 expression, pointing towards functional HIF-1.</p> <p>Conclusions</p> <p>In patients with endometrioid endometrial cancer, necrosis and necrosis-related expression of HIF-1α are important prognostic factors. More aggressive adjuvant treatment might be necessary to improve the outcome of patients with these characteristics.</p

    Reciprocal relationship between expression of hypoxia inducible factor 1α (HIF-1α) and the pro-apoptotic protein Bid in ex vivo colorectal cancer

    Get PDF
    Hypoxia inducible factor 1 (HIF-1) represses the transcription of pro-apoptotic bid in colorectal cancer cells in vitro. To assess the clinical relevance of this observation, HIF-1α and Bid were assessed in serial sections of 39 human colorectal adenocarcinomas by immunohistochemistry. In high HIF-1α nuclear-positive cell subpopulations, there was a significant reduction in Bid expression (ANOVA, P=0.04). Given the role of Bid in drug-induced apoptosis, these data add impetus to strategies targeting HIF-1 for therapeutic gain

    Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

    Get PDF
    Epstein-Barr virus (EBV) driven post-transplant lymphoproliferative disease (PTLD) is a heterogeneous and potentially lifethreatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; n = 5), solid organ transplant recipients (SOT; n = 15), and SOT having chronic elevated EBV-DNA load (n = 12). In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8) or monocytes. All SCT with cell-associated EBV DNA showed BARTs and EBNA1 expression, while LMP1 and LMP2 mRNA was found in 1 and 3 cases, respectively. In SOT, expression of BARTs was detected in all leukocyte samples. LMP2 and EBNA1 mRNA was found in 5/15 and 2/15, respectively, but LMP1 mRNA in only 1, coinciding with severe PTLD and high EBV DNA. Conclusion: EBV DNA is differently distributed between white cells and plasma in SOT versus SCT. EBV RNA profiling in blood is feasible and may have added value for understanding pathogenic virus activity in patients with elevated EBV-DNA

    Cooperative stimulation of vascular endothelial growth factor expression by hypoxia and reactive oxygen species: the effect of targeting vascular endothelial growth factor and oxidative stress in an orthotopic xenograft model of bladder carcinoma

    Get PDF
    Elevated thymidine phosphorylase has been shown to correlate with increased angiogenesis and poor prognosis in many cancers including transitional cell carcinoma of the bladder. In vitro studies have demonstrated that thymidine phosphorylase activity causes cellular oxidative stress and increases secretion of vascular endothelial growth factor. In this study, we show that thymidine phosphorylase activity also augments levels of the hypoxia-inducible factor-1α during in vitro hypoxia, and that thymidine phosphorylase activity and hypoxia act in concert to increase vascular endothelial growth factor (VEGF) secretion. We also demonstrate that thymidine phosphorylase overexpression confers tumorigenicity on an orthotopically implanted transitional cell carcinoma cell line. Administration of the antioxidant N-acetylcysteine together with a blocking anti-VEGF antibody abrogates the increase in tumorigenicity. Our results support the increased efficacy of combination approaches to antiangiogenic therapy
    corecore