3 research outputs found

    Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women.</p> <p>Methods</p> <p>Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software.</p> <p>Results</p> <p>The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia.</p> <p>Conclusions</p> <p>The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.</p

    TNFα is a potent inducer of platelet-activating factor synthesis in adipocytes but not in preadipocytes. Differential regulation by PI3K

    No full text
    Tumour necrosis factor alpha (TNFα) induces platelet-activating factor (PAF) synthesis in many inflammatory cells. Here, we investigate the possibility that TNFα stimulates PAF synthesis in rat adipocytes and preadipocytes and that phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) are implicated in this process. Primary cultures were incubated with [3H]lyso-PAF and stimulated by TNFα in the presence or absence of wortmannin. We found that, although both cultures synthesized PAF at a similar basal rate, TNFα-induced PAF synthesis in adipocytes was 7-fold higher than in preadipocytes. This suggested a maturation of PAF-TNFα interrelationship during adipocyte differentiation. Wortmannin enhanced TNFα-dependent PAF synthesis in adipocytes but not in preadipocytes, indicating the negative control by PI3K in mature cells. PAF increase was due to the regulation of its biosynthesis since PAF-acetylhydrolase (PAF-AH) activity was TNFα- and wortmannin-independent. Our hypothesis is that PAF mediates TNFα inflammatory effects in both adipocytes and preadipocytes and that this pathway is enhanced during adipocyte differentiation, a mechanism which is highly active during the development of obesity. © 2007 Elsevier Ltd. All rights reserved
    corecore