50 research outputs found
A Toy Model for Topology Change Transitions: Role of Curvature Corrections
We consider properties of near-critical solutions describing a test static
axisymmetric D-dimensional brane interacting with a bulk N-dimensional black
hole (N>D). We focus our attention on the effects connected with curvature
corrections to the brane action. Namely, we demonstrate that the second order
phase transition in such a system is modified and becomes first order. We
discuss possible consequences of these results for merger transitions between
caged black holes and black strings.Comment: 11 pages, 9 figures, v2: published versio
Evaluating the Wald Entropy from two-derivative terms in quadratic actions
We evaluate the Wald Noether charge entropy for a black hole in generalized
theories of gravity. Expanding the Lagrangian to second order in gravitational
perturbations, we show that contributions to the entropy density originate only
from the coefficients of two-derivative terms. The same considerations are
extended to include matter fields and to show that arbitrary powers of matter
fields and their symmetrized covariant derivatives cannot contribute to the
entropy density. We also explain how to use the linearized gravitational field
equation rather than quadratic actions to obtain the same results. Several
explicit examples are presented that allow us to clarify subtle points in the
derivation and application of our method
Non-Relativistic Gravitation: From Newton to Einstein and Back
We present an improvement to the Classical Effective Theory approach to the
non-relativistic or Post-Newtonian approximation of General Relativity. The
"potential metric field" is decomposed through a temporal Kaluza-Klein ansatz
into three NRG-fields: a scalar identified with the Newtonian potential, a
3-vector corresponding to the gravito-magnetic vector potential and a 3-tensor.
The derivation of the Einstein-Infeld-Hoffmann Lagrangian simplifies such that
each term corresponds to a single Feynman diagram providing a clear physical
interpretation. Spin interactions are dominated by the exchange of the
gravito-magnetic field. Leading correction diagrams corresponding to the 3PN
correction to the spin-spin interaction and the 2.5PN correction to the
spin-orbit interaction are presented.Comment: 10 pages, 3 figures. v2: published version. v3: Added a computation
of Einstein-Infeld-Hoffmann in higher dimensions within our improved ClEFT
which partially confirms and partially corrects a previous computation. See
notes added at end of introductio
On Black Fundamental Strings
We study aspects of four dimensional black holes with two electric charges,
corresponding to fundamental strings with generic momentum and winding on an
internal circle. The perturbative \alpha' correction to such black holes and
their gravitational thermodynamics is obtained.Comment: 17 pages, v2: published versio
Matched Asymptotic Expansion for Caged Black Holes - Regularization of the Post-Newtonian Order
The "dialogue of multipoles" matched asymptotic expansion for small black
holes in the presence of compact dimensions is extended to the Post-Newtonian
order for arbitrary dimensions. Divergences are identified and are regularized
through the matching constants, a method valid to all orders and known as
Hadamard's partie finie. It is closely related to "subtraction of
self-interaction" and shows similarities with the regularization of quantum
field theories. The black hole's mass and tension (and the "black hole
Archimedes effect") are obtained explicitly at this order, and a Newtonian
derivation for the leading term in the tension is demonstrated. Implications
for the phase diagram are analyzed, finding agreement with numerical results
and extrapolation shows hints for Sorkin's critical dimension - a dimension
where the transition turns second order.Comment: 28 pages, 5 figures. v2:published versio
Dynamical vs. Auxiliary Fields in Gravitational Waves around a Black Hole
The auxiliary/dynamic decoupling method of hep-th/0609001 applies to
perturbations of any co-homogeneity 1 background (such as a spherically
symmetric space-time or a homogeneous cosmology). Here it is applied to compute
the perturbations around a Schwarzschild black hole in an arbitrary dimension.
The method provides a clear insight for the existence of master equations. The
computation is straightforward, coincides with previous results of
Regge-Wheeler, Zerilli and Kodama-Ishibashi but does not require any ingenuity
in either the definition of variables or in fixing the gauge. We note that the
method's emergent master fields are canonically conjugate to the standard ones.
In addition, our action approach yields the auxiliary sectors.Comment: 26 page
On non-uniform smeared black branes
We investigate charged dilatonic black -branes smeared on a transverse
circle. The system can be reduced to neutral vacuum black branes, and we
perform static perturbations for the reduced system to construct non-uniform
solutions. At each order a single master equation is derived, and the
Gregory-Laflamme critical wavelength is determined. Based on the non-uniform
solutions, we discuss thermodynamic properties of this system and argue that in
a microcanonical ensemble the non-uniform smeared branes are entropically
disfavored even near the extremality, if the spacetime dimension is , which is the critical dimension for the vacuum case. However, the critical
dimension is not universal. In a canonical ensemble the vacuum non-uniform
black branes are thermodynamically favorable at , whereas the
non-uniform smeared branes are favorable at near the extremality.Comment: 24 pages, 2 figures; v2: typos corrected, submitted to
Class.Quant.Gra
Three-Charge Black Holes on a Circle
We study phases of five-dimensional three-charge black holes with a circle in
their transverse space. In particular, when the black hole is localized on the
circle we compute the corrections to the metric and corresponding
thermodynamics in the limit of small mass. When taking the near-extremal limit,
this gives the corrections to the constant entropy of the extremal three-charge
black hole as a function of the energy above extremality. For the partial
extremal limit with two charges sent to infinity and one finite we show that
the first correction to the entropy is in agreement with the microscopic
entropy by taking into account that the number of branes shift as a consequence
of the interactions across the transverse circle. Beyond these analytical
results, we also numerically obtain the entire phase of non- and near-extremal
three- and two-charge black holes localized on a circle. More generally, we
find in this paper a rich phase structure, including a new phase of
three-charge black holes that are non-uniformly distributed on the circle. All
these three-charge black hole phases are found via a map that relates them to
the phases of five-dimensional neutral Kaluza-Klein black holes.Comment: 58 pages, 10 figures; v2: Corrected typos, version appearing in JHE
A Dialogue of Multipoles: Matched Asymptotic Expansion for Caged Black Holes
No analytic solution is known to date for a black hole in a compact
dimension. We develop an analytic perturbation theory where the small parameter
is the size of the black hole relative to the size of the compact dimension. We
set up a general procedure for an arbitrary order in the perturbation series
based on an asymptotic matched expansion between two coordinate patches: the
near horizon zone and the asymptotic zone. The procedure is ordinary
perturbation expansion in each zone, where additionally some boundary data
comes from the other zone, and so the procedure alternates between the zones.
It can be viewed as a dialogue of multipoles where the black hole changes its
shape (mass multipoles) in response to the field (multipoles) created by its
periodic "mirrors", and that in turn changes its field and so on. We present
the leading correction to the full metric including the first correction to the
area-temperature relation, the leading term for black hole eccentricity and the
"Archimedes effect". The next order corrections will appear in a sequel. On the
way we determine independently the static perturbations of the Schwarzschild
black hole in dimension d>=5, where the system of equations can be reduced to
"a master equation" - a single ordinary differential equation. The solutions
are hypergeometric functions which in some cases reduce to polynomials.Comment: 47 pages, 12 figures, minor corrections described at the end of the
introductio