48 research outputs found

    Screening of desert plants for use against bacterial pathogens in fish

    Get PDF
    The antibacterial activity of aqueous extracts of 104 desert plant species was studied on the fol- lowing fish bacterial pathogens: Aeromonas hydrophila, Photobacterium damselae subspecies piscicida, Streptococcus iniae, and Vibrio alginolyticus. Seventeen plant species had antibacte- rial activity, as identified by disk diffusion assay. The pathogen P. damselae was sensitive to all 17 active extracts except Peganum harmala and a high inhibitory effect (14-19.5 mm) was pro- duced by Anchusa strigosa, Hammada scoparia, Achillea fragrantissima, Pulicaria crispa and Loranthus acaciae. The pathogens A. hydrophila and V. alginolyticus were inhibited by H. sco- paria, L. acaciae, and P. harmala (7-20.5 mm). The pathogen S. iniae was inhibited by Ochradenus baccatus and Reseda stenostachya (10.5 mm). The benefits of using desert plants as an alternative to conventional antibiotics are discussed

    Population genetic structure and the conservation of isolated populations of Acacia raddiana in the Negev Desert

    No full text
    There is much concern over the high mortality of many populations of Acacia raddiana, a keystone tree species in the Negev desert of Israel. We used random amplified polymorphic DNA (RAPD) to assess patterns of genetic variation within and among 12 populations of A. raddiana from the Arava (Syrian-African Rift) valley and western Negev. A high level of genetic polymorphism was recorded within populations. An analysis of molecular variance (AMOVA) showed that about 59.4% of total genetic variance occurred among populations, which is considerably greater population differentiation than that recorded for other outbreeding species. Cluster and principal coordinates analyses and AMOVA indicate that the western Negev and Arava valley populations are highly differentiated. We suggest that there may have been two invasions of A. raddiana into Israel: one across the northern Sinai/Gaza Strip area into the western Negev, with some plants reaching the Dead Sea and a second invasion across the southern part of the Sinai peninsula, or even from Saudi Arabia, up to the Arava valley. From the conservation point of view, each population should be conserved separately because they are genetically highly differentiated and loss of any one population would lead to a dramatic loss of genetic variation. The mixing of genetically distinct populations may give rise to outbreeding depression (particularly because of GXE interactions). An obvious first step to the maintenance of this species' genetic diversity is the separate management of the western Negev and Arava valley populations because of their different evolutionary histories. © 2002 Elsevier Science Ltd. All rights reserved.Articl

    Water status of isolated Negev desert populations of <I>Acacia raddiana </I>with different mortality levels

    No full text
    AgriwetenskappeBewaringsekologiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Direct effect of CD on glutathione s-transferase and glutathione reductase from <em>Calystegia sepium</em>.

    No full text
    Interactions between heavy metals, glutathione, glutathione S-transferase (GST), and glutathione reductase (GR) are being investigated by many working groups, but evaluation of the direct effect of Cd2+ on these enzymes in vitro is lacking. We report here the effect of cadmium (10, 50, 100, 250 mu M CdSO4) on partially purified enzymes from Calystegia sepium. Plants were grown under normal field conditions without metals and the enzymes were extracted by Tris buffer and partially purified by ammonium sulphate fractionation and gel filtration. Glutathione S-transferase activity was measured with different substrates, i. e., 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzylchloride (NBC), and the herbicide Fluorodifen. GST activity was significantly lower in leaf compared to stem, flower, and rhizome and the inhibitory effect of Cd was obtained with NBC and Fluorodifen substrates at 250 mu M. There was no effect of Cd on GR activity up to 250 mu M

    Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts.

    No full text
    There is a duality in plant tolerance to pollutants and ist response to the pollutants&#39; stress. On the one hand some plants, (hyper)tolerant to heavy metals, are able to hyperaccumulate these metals in shoots, which could be beneficial for phytoremediation purposes to clean-up soil and water. On the other hand tolerant food crops, exposed to heavy metals in their growth medium, may be dangerous as carriers of toxic metals in the food chain leading to food toxicity. There is an additional duality in plant tolerance to heavy metals and that is in food crops that are tolerant and/or hyperaccumulators, which could be used on one hand for phytoremediation, under controlled conditions and on the other hand for food fortification with essential metals. Similarly, plants are also exposed to a large number of xenobiotic organic pollutants. Because they generally cannot avoid these compounds, plants take up, translocate, metabolize and detoxify many of them. There is a large variability in tolerance (defence) mechanisms against organic pollutants among plant species. This includes production of reductants but also scavenger molecules like ascorbate and glutathione and expression of the P-450 defence system, and superfamilies of the enzymes glutathione- and glucosyl-transferases. Again, with view to organic pollutants, plant detoxification mechanisms might well protect the plant itself, but produce compounds with some deleterious potential for other organisms. In this review we discuss these dualities on the basis of examples of agricultural and &#39;wild&#39; species exposed to metal contaminants (mainly Cd) and organic pollutants. Differences in uptake and translocation of various pollutants and their consequences will be considered. We will separately outline the effects of the organic and non-organic Pollutants on the internal metabolism and the detoxification mechanisms and try to indicate the differences between both types of pollutants. Finally the consequences and solutions of these dualities in plant tolerance to pollutants will be discussed
    corecore