10 research outputs found

    Genetic and Pharmacologic Inhibition of mTORC1 Promotes EMT by a TGF-β-independent mechanism

    No full text
    International audienceEpithelial-to-mesenchymal transition (EMT) is a transdifferentiation process that converts epithelial cells into highly motile mesenchymal cells. This physiologic process occurs largely during embryonic development but is aberrantly reactivated in different pathologic situations, including fibrosis and cancer. We conducted a siRNA screening targeted to the human kinome with the aim of discovering new EMT effectors. With this approach, we have identified mTOR complex 1 (mTORC1), a nutrient sensor that controls protein and lipid synthesis, as a key regulator of epithelial integrity. Using a combination of RNAi and pharmacologic approaches, we report here that inhibition of either mTOR or RPTOR triggers EMT in mammary epithelial cells. This EMT was characterized by the induction of the mesenchymal markers such as fibronectin, vimentin, and PAI-1, together with the repression of epithelial markers such as E-cadherin and ZO-3. In addition, mTORC1 blockade enhanced in vivo migratory properties of mammary cells and induced EMT independent of the TGF-β pathway. Finally, among the transcription factors known to activate EMT, both ZEB1 and ZEB2 were upregulated following mTOR repression. Their increased expression correlated with a marked reduction in miR-200b and miR-200c mRNA levels, two microRNAs known to downregulate ZEB1 and ZEB2 expression. Taken together, our findings unravel a novel function for mTORC1 in maintaining the epithelial phenotype and further indicate that this effect is mediated through the opposite regulation of ZEB1/ZEB2 and miR-200b and miR-200c. Furthermore, these results suggest a plausible etiologic explanation for the progressive pulmonary fibrosis, a frequent adverse condition associated with the therapeutic use of mTOR inhibitors

    Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDÎłc-/- mice

    No full text
    International audienceEssentials B cells are attractive targets for gene therapy and particularly interesting for immunotherapy. A baboon envelope pseudotyped lentiviral vector (BaEV-LV) was tested for B-cell transduction. BaEV-LVs transduced mature and plasma human B cells with very high efficacy. BaEV-LVs allowed secretion of functional factor IX from B cells at therapeutic levels in vivo. SUMMARY: Background B cells are attractive targets for gene therapy for diseases associated with B-cell dysfunction and particularly interesting for immunotherapy. Moreover, B cells are potent protein-secreting cells and can be tolerogenic antigen-presenting cells. Objective Evaluation of human B cells for secretion of clotting factors such as factor IX (FIX) as a possible treatment for hemophilia. Methods We tested here for the first time our newly developed baboon envelope (BaEV) pseudotyped lentiviral vectors (LVs) for human (h) B-cell transduction following their adaptive transfer into an NOD/SCIDÎłc-/- (NSG) mouse. Results Upon B-cell receptor stimulation, BaEV-LVs transduced up to 80% of hB cells, whereas vesicular stomatitis virus G protein VSV-G-LV only reached 5%. Remarkably, BaEVTR-LVs permitted efficient transduction of 20% of resting naive and 40% of resting memory B cells. Importantly, BaEV-LVs reached up to 100% transduction of human plasmocytes ex vivo. Adoptive transfer of BaEV-LV-transduced mature B cells into NOD/SCID/Îłc-/- (NSG) [non-obese diabetic (NOD), severe combined immuno-deficiency (SCID)] mice allowed differentiation into plasmablasts and plasma B cells, confirming a sustained high-level gene marking in vivo. As proof of principle, we assessed BaEV-LV for transfer of human factor IX (hFIX) into B cells. BaEV-LVs encoding FIX efficiently transduced hB cells and their transfer into NSG mice demonstrated for the first time secretion of functional hFIX from hB cells at therapeutic levels in vivo. Conclusions The BaEV-LVs might represent a valuable tool for therapeutic protein secretion from autologous B cells in vivo in the treatment of hemophilia and other acquired or inherited diseases

    Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent

    Get PDF
    International audienceHematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34+ (hCD34+) progenitor cells upon a single application. Strikingly, these H/F-LVs also allowed transduction of up to 70% of nonstimulated quiescent hCD34+ cells, whereas conventional vesicular stomatitis virus G (VSV-G)-LVs reached 5% at the most with H/F-LV entry occurring exclusively through the CD46 complement receptor. Importantly, reconstitution of NOD/SCIDÎłc-/- (NSG) mice with H/F-LV transduced prestimulated or resting hCD34+ cells confirmed these high transduction levels in all myeloid and lymphoid lineages. Remarkably, for resting CD34+ cells, secondary recipients exhibited increasing transduction levels of up to 100%, emphasizing that H/F-LVs efficiently gene-marked HSCs in the resting state. Because H/F-LVs promoted ex vivo gene modification of minimally manipulated CD34+ progenitors that maintained stemness, we assessed their applicability in Fanconi anemia, a bone marrow (BM) failure with chromosomal fragility. Notably, only H/F-LVs efficiently gene-corrected minimally stimulated hCD34+ cells in unfractionated BM from these patients. These H/F-LVs improved HSC gene delivery in the absence of cytokine stimulation while maintaining their stem cell potential. Thus, H/F-LVs will facilitate future clinical applications requiring HSC gene modification, including BM failure syndromes, for which treatment has been very challenging up to now

    Anti-Apoptotic Effects of Lentiviral Vector Transduction Promote Increased Rituximab Tolerance in Cancerous B-Cells

    No full text
    Diffuse large B-cell lymphoma (DLBCL) is characterized by great genetic and clinical heterogeneity which complicates prognostic prediction and influences treatment efficacy. The most common regimen, R-CHOP, consists of a combination of anthracycline- and immuno-based drugs including Rituximab. It remains elusive how and to which extent genetic variability impacts the response and potential tolerance to R-CHOP. Hence, an improved understanding of mechanisms leading to drug tolerance in B-cells is crucial, and modelling by genetic intervention directly in B-cells is fundamental in such investigations. Lentivirus-based gene vectors are widely used gene vehicles, which in B-cells are an attractive alternative to potentially toxic transfection-based methodologies. Here, we investigate the use of VSV-G-pseudotyped lentiviral vectors in B-cells for exploring the impact of microRNAs on tolerance to Rituximab. Notably, we find that robust lentiviral transduction of cancerous B-cell lines markedly and specifically enhances the resistance of transduced germinal center B-cells (GCBs) to Rituximab. Although Rituximab works partially through complement-mediated cell lysis, increased tolerance is not achieved through effects of lentiviral transduction on cell death mediated by complement. Rather, reduced levels of PARP1 and persistent high levels of CD43 in Rituximab-treated GCBs demonstrate anti-apoptotic effects of lentiviral transduction that may interfere with the outcome and interpretation of Rituximab tolerance studies. Our findings stress that caution should be exercised exploiting lentiviral vectors in studies of tolerance to therapeutics in DLBCL. Importantly, however, we demonstrate the feasibility of using the lentiviral gene delivery platform in studies addressing the impact of specific microRNAs on Rituximab responsiveness
    corecore