2,567 research outputs found

    The effect of flow oscillations on cavity drag

    Get PDF
    An experimental investigation of flow over an axisymmetric cavity shows that self-sustained, periodic oscillations of the cavity shear layer are associated with low cavity drag. In this low-drag mode the flow regulates itself to fix the mean-shear-layer stagnation point at the downstream corner. Above a critical value of the cavity width-to-depth ratio there is an abrupt and large increase of drag due to the onset of the ‘wake mode’ of instability. It is also shown by measurement of the momentum balance how the drag of the cavity is related to the state of the shear layer, as defined by the mean momentum transport ρuv\rho\overline{u}\overline{v} and the Reynolds stress ρuv\rho\overline{u^{\prime}v^{\prime}}, and how these are related to the amplifying oscillations in the shear layer. The cavity shear layer is found to be different, in several respects, from a free shear layer

    On the resonance of a pliant tube as a mechanism for valveless pumping

    Get PDF
    Valveless pumping can be achieved through the periodic compression of a pliant tube asymmetrically from its interfaces to different tubing or reservoirs. A mismatch of characteristic impedance between the flow channels is necessary for creating wave reflection sites. Previous experimental studies of the behaviour of such a pump were continued in order to demonstrate the wave mechanics necessary for the build-up of pressure and net flow. Specific measurements of the transient and resonant properties were used to relate the bulk responses to the pump mechanics. Ultrasound imaging through the tube wall allowed visualization of the wall motion concurrently with pressure and flow measurements. For analysis, a one-dimensional wave model was constructed which predicted many of the characteristics exhibited by the experiments

    Turbulent vortex ring/free surface interaction

    Get PDF
    The interaction of turbulent vortex rings that approach a clean water surface under various angles is experimentally investigated. The temporal evolution of the vortex rings with an initial Reynolds number of Re_0 = 7500 is characterized by the laminar/turbulent transition and asymptotic relaminarization of the flow. Using the shadowgraph technique, two major flow cases were identified as a result of the vortex-ring/free-surface interaction: a trifurcation case that results from the interaction during the transition stage, and a bifurcation case that evolves during the fully-developed turbulent stage. In contrast to the laminar interaction, the turbulent bifurcation pattern is characterized by the reconnection and mutual interaction of many small-scale structures. Simultaneous digital particle image velocimetry (DPIV) and shadowgraph measurements reveal that the evolution of the small-scale structures at the free surface is strongly dominated by the bifurcation pattern, which in turn is a consequence of the persisting laminar sublayer in the core regions of the reconnected turbulent vortex loops

    H2-Induced Pressure Broadening and Pressure Shift in the P-Branch of the v3 Band of CH4 from 300 to 700 K

    Get PDF
    For accurate modelling of observations of exoplanet atmospheres, quantification of the pressure broadening of infrared absorption lines for and by a variety of gases at elevated temperatures is needed. High-resolution high-temperature H2-pressure-broadened spectra are recorded for the CH4 v3-band P-branch. Measured linewidths for 116 transitions between 2840 and 3000 cm^{-1} with temperature and pressures ranging between 300 and 700 K, and 10 and 933 Torr, respectively, were used to find rotation- and tetrahedral-symmetry-dependent coefficients for pressure and temperature broadening and pressure-induced lineshifts. The new pressure-broadening data will be useful in radiative-transfer models for retrieving the properties of observed expolanet atmospheres.Comment: 23 pages, 10 figures, 7 tables, Resubmitted for 2nd round of revisions to JQSRT (Journal of Quantitative Spectroscopy & Radiative Transfer). Comments welcome

    Elasto-capillary coalescence of multiple parallel sheets

    Get PDF
    We analyse two-dimensional clamped parallel elastic sheets which are partially immersed in liquid as a model for elasto-capillary coalescence. In the existing literature this problem is studied via minimal energy analysis of capillary and elastic energies of the post-coalescence state, yielding the maximal stable post-coalescence bundle size. Utilizing modal stability analysis and asymptotic analysis, we studied the stability of the configuration before the coalescence occurred. Our analysis revealed previously unreported relations between viscous forces, body forces, and the instability yielding the coalescence, thus undermining a common assumption that coalescence will occur as long as it will not create a bundle larger than the maximal stable post-coalesced size. A mathematical description of the process creating the hierarchical coalescence structure was obtained and yielded that the mean number of sheets per coalesced region is limited to the subset 2^N where N is the set of natural numbers. Our theoretical results were illustrated by experiments and good agreement with the theoretical predictions was observed

    Fahr’s syndrome with seizure presentation

    Get PDF
    Fahr's disease (FD) or Fahr’s syndrome is characterized by basal ganglia calcification with clinical manifestations in the form of neuropsychiatric disorders, neurological symptoms, and cognitive symptoms. FD commonly affects young to middle aged adults. The etiology of this syndrome does not identify a specific agent. Clinical manifestations of this disease incorporate a wide variety of symptoms. The diagnostic criteria of Fahr’s Syndrome consist of bilateral calcification of basal ganglia, progressive neurologic dysfunction, absence of biochemical abnormalities, infectious, traumatic, and a significant family history. Medical imaging techniques for the diagnosis consist of computed tomography (CT), magnetic resonance imaging (MRI), and plain radiography of the skull. This paper presents a case of Fahr’s syndrome in a 60-year-old married prisoner with antisocial personality and seizures. Furthermore, CT and MRI scans showed bilateral symmetric calcifications in the basal ganglia calcification (BGC) and dentate nuclei, cerebellum, and centrum semiovale

    Flow Velocity Measurement by Image Processing of Optically Activated Tracers

    Get PDF
    A computerized flow visualization technique capable of quantifying the flow field automatically has been developed. This technique uses afterglowing effect of optically activated phosphorescent particles to retrieve vectorial information on each trace. By using this information, in conjunction with computer image processing, the flow field of a free surface transient vortex was investigated

    Flow measurements near a Reynolds ridge

    Get PDF
    The Reynolds ridge is a well-known phenomenon first observed in 1854 by Henry David Thoreau. It was then rediscovered by Langton in 1872, but Reynolds was the first to recognize that the surface tension difference was the physical mechanism behind its formation and saw the equality between the case of a spreading film and that of a stagnant film met by oncoming flow. However, it wasn't until McCutchen in 1970 that the prediction of a boundary layer forming beneath the film was introduced as the cause of the surface deformation rise ahead of the film due to the retardation of the flow. The first quantitative theory of the ridge was formed by Harper and Dixon (1974), who stated that the surface tension gradient balances the viscous shear stress generated in the boundary layer. Experimental studies of the ridge so far include Schlieren visualizations by Sellin (1968) as well as by Scott (1982) who measured the surface slope across the ridge and found good comparisons between the theoretical results of Harper and Dixon. Finally, it was Scott who recognized that even at very low levels of surface contamination the Reynolds ridge is found to exist

    Miniature illuminator for laser Doppler velocimeter assembled on micromachined silicon optical bench

    Get PDF
    We have built a miniature illuminator for Laser Doppler velocimeter on micromachined silicon optical bench utilizing a novel optical scheme. We used two intersecting coherent beams from the two opposing facets of semiconductor laser die to form a standing interference pattern needed for the particle detection and velocity measurement. Such devices are of interest to NASA for investigating wind patterns and dust loading on planets with atmosphere. They have been applied to problems where the liquid or gas flux must be characterized without disturbing the flow. In addition, the small probe volume makes possible local flow characterization and profiling. The device fabrication, and the results of the fringe characterization and velocity measurements are presented and discussed

    Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

    Get PDF
    Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial resolution (~100 mm), long term three-dimensional imaging capability, in vivo quick access to images in three different sections, and noninvasiveness it is being used as the method of choice. Methods: The present study is the search results for authors and sources of information in the field of molecular and cellular imaging to examine the problems and perspectives about stem cells labeling with Ultrasmall Super Paramagnetic Iron Oxide (USPIO) and their tracking by MRI. Results: With the advancement of technology, including quantum physics, chemistry, and computer software, MRI with an excellent spatial resolution and contrast, is surpasses other imaging modalities in the analysis of anatomical and pathological features and images of all body tissues. From the other side, advances in the astronomical science, chemistry and nanotechnology, high biocompatibility and cytotoxicity of nanoparticles, and due to analysis in the metabolic pathways of iron made the procedure easier; however, there are still several fundamental questions in understanding the mechanism of biological molecules in the living cells including: 1- How to detect not only the location but also the performance of the labeled cells? Probably combination of USPIO nanoparticles with other reporter genes as contrast agents for MRI and PET can simultaneously be used to overcome these limitations 2) How to trace stem cells from pre-clinical models to translate to humans? Up to now, due to issues of bioethics, little studies have been done in this area. 3) Whether the transplanted stem cells that have reached the target tissue, will remain or migrate? Despite the fact that cell proliferation and exocytosis are two main factors for long term protection of USPIO nanoparticles inside cells, their signals cannot be received for a long time. 4) What mechanisms cause stem cells reaching the target tissue to react with their environment? And 5) what is the number of transplanted cells in live tissue, and what is their half-life? Conclusion: This study showed that USPIO nanoparticles can enter the cell with a clear dose without any adverse biological effects and could be detected by SWI and T2* techniques under MRI (1.5 Tesla) scanner for almost one month. MRI as a secure mean can illustrate with optimal resolution the spatial-resolution and three-dimensional positions of the stem cells. Keywords: Ultrasmall Super Paramagnetic Iron Oxide (USPIO), labeled stem cell, in vivo tracking, MRI
    corecore