2,909 research outputs found

    Isotropic properties of the photonic band gap in quasicrystals with low-index contrast

    Full text link
    We report on the formation and development of the photonic band gap in two-dimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low index contrast. Finite size structures made of dielectric cylindrical rods were studied and measured in the microwave region, and their properties compared with a conventional hexagonal crystal. Band gap characteristics were investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0 \degree to 30\degree were used in order to investigate the isotropic nature of the band gap. The arbitrarily high rotational symmetry of aperiodically ordered structures could be practically exploited to manufacture isotropic band gap materials, which are perfectly suitable for hosting waveguides or cavities.Comment: 16 pages, 7 figures, submitted to PR

    Critical-state effects on microwave losses in type-II superconductors

    Full text link
    We discuss the microwave energy losses in superconductors in the critical state. The field-induced variations of the surface resistance are determined, in the framework of the Coffey and Clem model, by taking into account the distribution of the vortex magnetic field inside the sample. It is shown that the effects of the critical state cannot generally be disregarded to account for the experimental data. Results obtained in bulk niobium at low temperatures are quantitatively justified.Comment: 4 pages, 4 embedded figures, to be published on Eur. Phys. J.

    Microwave Harmonic Emission in MgB2 Superconductor: Comparison with YBaCuO

    Full text link
    We report results of microwave second-harmonic generation in ceramic samples of MgB2, prepared by different methods. The SH signal has been investigated as a function of the temperature and the static magnetic field. The results are discussed in the framework of models reported in the literature. We show that the peculiarities of the SH signal are related to the specific properties of the sample. A comparison with the results obtained in ceramic and crystalline YBa(2)Cu(3)O(7) shows that the second-harmonic emission in MgB2 is weaker than that observed in ceramic YBa(2)Cu(3)O(7).Comment: 13 pages, 6 figures; Proceedings of Third Workshop on Metamaterials and Special Materials for Electromagnetic Applications and TLC (Rome, 30-31 March, 2006

    An Innovative Methodological Approach for Monitoring and Chemical Characterization of Odors around Industrial Sites

    Get PDF
    This study aims to highlight the potentialities of an innovative methodological approach for monitoring and chemical characterization of odors, especially in high concern and complex industrial areas. The proposed approach was developed in order to monitor and identify odor-active compounds responsible for odor annoyance coming from different industrial activities such as landfills, wastewater treatment plants, and petroleum plants. The methodology's strengths are as follows: (1) the tailored approach for each typology of industrial areas/sites; (2) integration of technologies able to provide real-time information about the emissive sources; (3) mapping of air pollutants on the territory aimed to identify and discriminate among different fugitive emissions responsible for odor annoyance; (4) collection of more representative air samples only during the nuisance events, thanks to the implementation of innovative sampling systems and citizens' involvement; and (5) increased analytical sensitivity in odor-active VOCs detection. This methodology reveals to be a useful tool to collect real-time information about the emission sources and their impacts on the surrounding area giving credit to citizens' complaints. Moreover, it allows to overcome the limitations of the conventional approaches related to the lack of instrumental sensitivity and to identify the chemical compounds contributing to the odor annoyance

    A Sampled-data Regulator using Sliding Modes and Exponential Holder for Linear Systems

    Get PDF
    In a general command tracking and disturbance rejection problem, it is known that a sampled-data controller using zero-order hold may only guarantee asymptotic tracking at the sampling instances, but in general cannot guarantee the absence of ripples between the sampling instants. In this paper, a discrete robust regulator and a sampled-data robust regulator using slide modes techniques and exponential holder are presented. In particular, it is shown that the controller proposed for the sampled-data system ensures asymptotic tracking when applied to the continuous-time system

    Optimized Realization of Bayesian Networks in Reduced Normal Form using Latent Variable Model

    Full text link
    Bayesian networks in their Factor Graph Reduced Normal Form (FGrn) are a powerful paradigm for implementing inference graphs. Unfortunately, the computational and memory costs of these networks may be considerable, even for relatively small networks, and this is one of the main reasons why these structures have often been underused in practice. In this work, through a detailed algorithmic and structural analysis, various solutions for cost reduction are proposed. An online version of the classic batch learning algorithm is also analyzed, showing very similar results (in an unsupervised context); which is essential even if multilevel structures are to be built. The solutions proposed, together with the possible online learning algorithm, are included in a C++ library that is quite efficient, especially if compared to the direct use of the well-known sum-product and Maximum Likelihood (ML) algorithms. The results are discussed with particular reference to a Latent Variable Model (LVM) structure.Comment: 20 pages, 8 figure

    Microwave intermodulation distortion of MgB2 thin films

    Full text link
    The two tone intermodulation arising in MgB2 thin films deposited in-situ by planar magnetron sputtering on sapphire substrates is studied. Samples are characterised using an open-ended dielectric puck resonator operating at 8.8 GHz. The experimental results show that the third order products increase with the two-tone input power with a slope ranging between 1.5 and 2.3. The behaviour can be understood introducing a mechanism of vortex penetration in grain boundaries as the most plausible source of non linearities in these films. This assumption is confirmed by the analysis of the field dependence of the surface resistance, that show a linear behaviour at all temperatures under test.Comment: 13 pages, 3 figures; to be published in Appl. Phys. Let

    Intent Classification in Question-Answering Using LSTM Architectures

    Full text link
    Question-answering (QA) is certainly the best known and probably also one of the most complex problem within Natural Language Processing (NLP) and artificial intelligence (AI). Since the complete solution to the problem of finding a generic answer still seems far away, the wisest thing to do is to break down the problem by solving single simpler parts. Assuming a modular approach to the problem, we confine our research to intent classification for an answer, given a question. Through the use of an LSTM network, we show how this type of classification can be approached effectively and efficiently, and how it can be properly used within a basic prototype responder.Comment: Presented at the 2019 Italian Workshop on Neural Networks (WIRN'19) - June 201
    corecore