2,909 research outputs found
Isotropic properties of the photonic band gap in quasicrystals with low-index contrast
We report on the formation and development of the photonic band gap in
two-dimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low
index contrast. Finite size structures made of dielectric cylindrical rods were
studied and measured in the microwave region, and their properties compared
with a conventional hexagonal crystal. Band gap characteristics were
investigated by changing the direction of propagation of the incident beam
inside the crystal. Various angles of incidence from 0 \degree to 30\degree
were used in order to investigate the isotropic nature of the band gap. The
arbitrarily high rotational symmetry of aperiodically ordered structures could
be practically exploited to manufacture isotropic band gap materials, which are
perfectly suitable for hosting waveguides or cavities.Comment: 16 pages, 7 figures, submitted to PR
Critical-state effects on microwave losses in type-II superconductors
We discuss the microwave energy losses in superconductors in the critical
state. The field-induced variations of the surface resistance are determined,
in the framework of the Coffey and Clem model, by taking into account the
distribution of the vortex magnetic field inside the sample. It is shown that
the effects of the critical state cannot generally be disregarded to account
for the experimental data. Results obtained in bulk niobium at low temperatures
are quantitatively justified.Comment: 4 pages, 4 embedded figures, to be published on Eur. Phys. J.
Microwave Harmonic Emission in MgB2 Superconductor: Comparison with YBaCuO
We report results of microwave second-harmonic generation in ceramic samples
of MgB2, prepared by different methods. The SH signal has been investigated as
a function of the temperature and the static magnetic field. The results are
discussed in the framework of models reported in the literature. We show that
the peculiarities of the SH signal are related to the specific properties of
the sample. A comparison with the results obtained in ceramic and crystalline
YBa(2)Cu(3)O(7) shows that the second-harmonic emission in MgB2 is weaker than
that observed in ceramic YBa(2)Cu(3)O(7).Comment: 13 pages, 6 figures; Proceedings of Third Workshop on Metamaterials
and Special Materials for Electromagnetic Applications and TLC (Rome, 30-31
March, 2006
An Innovative Methodological Approach for Monitoring and Chemical Characterization of Odors around Industrial Sites
This study aims to highlight the potentialities of an innovative methodological approach for monitoring and chemical characterization of odors, especially in high concern and complex industrial areas. The proposed approach was developed in order to monitor and identify odor-active compounds responsible for odor annoyance coming from different industrial activities such as landfills, wastewater treatment plants, and petroleum plants. The methodology's strengths are as follows: (1) the tailored approach for each typology of industrial areas/sites; (2) integration of technologies able to provide real-time information about the emissive sources; (3) mapping of air pollutants on the territory aimed to identify and discriminate among different fugitive emissions responsible for odor annoyance; (4) collection of more representative air samples only during the nuisance events, thanks to the implementation of innovative sampling systems and citizens' involvement; and (5) increased analytical sensitivity in odor-active VOCs detection. This methodology reveals to be a useful tool to collect real-time information about the emission sources and their impacts on the surrounding area giving credit to citizens' complaints. Moreover, it allows to overcome the limitations of the conventional approaches related to the lack of instrumental sensitivity and to identify the chemical compounds contributing to the odor annoyance
A Sampled-data Regulator using Sliding Modes and Exponential Holder for Linear Systems
In a general command tracking and disturbance rejection problem, it is known that a sampled-data controller using zero-order hold may only guarantee asymptotic tracking at the sampling instances, but in general cannot guarantee the absence of ripples between the sampling instants. In this paper, a discrete robust regulator and a sampled-data robust regulator using slide modes techniques and exponential holder are presented. In particular, it is shown that the controller proposed for the sampled-data system ensures asymptotic tracking when applied to the continuous-time system
Optimized Realization of Bayesian Networks in Reduced Normal Form using Latent Variable Model
Bayesian networks in their Factor Graph Reduced Normal Form (FGrn) are a
powerful paradigm for implementing inference graphs. Unfortunately, the
computational and memory costs of these networks may be considerable, even for
relatively small networks, and this is one of the main reasons why these
structures have often been underused in practice. In this work, through a
detailed algorithmic and structural analysis, various solutions for cost
reduction are proposed. An online version of the classic batch learning
algorithm is also analyzed, showing very similar results (in an unsupervised
context); which is essential even if multilevel structures are to be built. The
solutions proposed, together with the possible online learning algorithm, are
included in a C++ library that is quite efficient, especially if compared to
the direct use of the well-known sum-product and Maximum Likelihood (ML)
algorithms. The results are discussed with particular reference to a Latent
Variable Model (LVM) structure.Comment: 20 pages, 8 figure
Microwave intermodulation distortion of MgB2 thin films
The two tone intermodulation arising in MgB2 thin films deposited in-situ by
planar magnetron sputtering on sapphire substrates is studied. Samples are
characterised using an open-ended dielectric puck resonator operating at 8.8
GHz. The experimental results show that the third order products increase with
the two-tone input power with a slope ranging between 1.5 and 2.3. The
behaviour can be understood introducing a mechanism of vortex penetration in
grain boundaries as the most plausible source of non linearities in these
films. This assumption is confirmed by the analysis of the field dependence of
the surface resistance, that show a linear behaviour at all temperatures under
test.Comment: 13 pages, 3 figures; to be published in Appl. Phys. Let
Intent Classification in Question-Answering Using LSTM Architectures
Question-answering (QA) is certainly the best known and probably also one of
the most complex problem within Natural Language Processing (NLP) and
artificial intelligence (AI). Since the complete solution to the problem of
finding a generic answer still seems far away, the wisest thing to do is to
break down the problem by solving single simpler parts. Assuming a modular
approach to the problem, we confine our research to intent classification for
an answer, given a question. Through the use of an LSTM network, we show how
this type of classification can be approached effectively and efficiently, and
how it can be properly used within a basic prototype responder.Comment: Presented at the 2019 Italian Workshop on Neural Networks (WIRN'19) -
June 201
- …