1,925 research outputs found

    Analysis of the Influence of the Molecular Volume to Predict Experimental Pressure-Temperature Behavior in the Isotropic-Nematic Phase Transition of PAP, 5CB, MBBA and EBBA

    Get PDF
    In this work, we have analyzed the experimental pressure-temperature behavior at the isotropic-nematic phase transition of the liquid crystals PAP, 5CB, MBBA, and EBBA at 1 atm by using the HERSW Convex Peg model in conjunction with the IPCM model. We have calculated the molecular volume values for the hard and attractive cores from theoretical quantum calculations at the PM3, PM6, B3LYP/6-311++G(d,p)//PM6, and M06/6-311++G(d,p)//PM6 levels of theory. The results suggest that the best theoretical prediction of the experimental pressure-temperature behavior is obtained when the molecular volume is evaluated at the DFT level.En este trabajo, nosotros analizamos el comportamiento experimental presión-temperatura pa la fase de transición Isotrópica-nemática de los cristales líquidos PAP, 5CB, MBBA, y EBBA a 1 atm usando el modelo HERSW Convex Peg en conjunto con el modelo IPCM. Nosotros calculamos el valor del volumen molecular y cálculos teóricos para los niveles PM3, PM6, B3LyP/6-311++G(d,p)//PM& y M06/6-311++(d,p)//PM6. Los resultados sugieren que la mejor predicción del comportamiento experimental presión-temperatura es obtenido cuando el volumen molecular es evaluado para el nivel DFT

    Influence of the molecular interaction in the value of molecular volume for the isotropicnematic transition of p-azoxianisol using th emodel HERSW in conjuntion with IPCM model

    Get PDF
    In this work, we analyzed the experimental pressure-temperature behavior in the Isotropic-Nematic phase transitionfor the liquid crystal p-azoxianisol at 1 atm using a development for the HERSW Conveg Peg model. Additionally, we obtained the values of the molecular volumes for the hard and attractive cores from theoretical quantum calculations at PM3, PM6 and B3LYP/6-311++G levels considering the molecular interaction among the liquidcrystals (PAA)5. We found that the best prediction for experimental data appears when the effect of the molecular interaction is considered in the volume calculation. Specifically for a/b=3.7, V0=70.86 A3 and a/bl=1.95 the best prediction was obtained

    Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost

    Get PDF
    This study aimed to develop new techniques for the remediation of contaminated soils based on the applicationof zero-valent iron nanoparticles (nZVI) and bioremediation with compost from organic wastesand a mixed technique of both. An assessment of the effectiveness of remediation in two soils contaminatedwith hydrocarbons and heavy metals was carried out, with the aim of looking for positive synergiesby combining the two techniques, and demonstrating their viability on an industrial scale. The applicationof nZVI for in situ immobilization of As and Cr in two different soils (Soil I from a contaminatedindustrial site and Soil II, contaminated artificially) showed a decrease in the concentration of As in SoilI and Soil II, as well as a decrease in Cr concentration for Soil I and Soil II in the leachate of both soils.The addition of compost and nanoparticles under uncontrolled environmental conditions in biopiles wasable to produce a decrease in the concentration of aliphatic hydrocarbons of up to 60% in the two soils.Especially, degradation and transformation of longer chains occurred. A significant reduction of ecotoxicitywas observed throughout the process in the biopile of soil II, not reaching the LC50 even with 100%of the sample after the treatment, in both earthworm and seeds growth tests

    Surface shape resonances in lamellar metallic gratings

    Full text link
    The specular reflectivity of lamellar gratings of gold with grooves 0.5 microns wide separated by a distance of 3.5 microns was measured on the 2000 cm1^{-1} - 7000 cm1^{-1} spectral range for p-polarized light. For the first time, experimental evidence of the excitation of electromagnetic surface shape resonances for optical frequencies is given. In these resonances the electric field is highly localized inside the grooves and is almost zero in all other regions. For grooves of depth equal to 0.6 microns, we have analyzed one of these modes whose wavelength (3.3 microns) is much greater than the lateral dimension of the grooves.Comment: 4 pages (LaTex), 5 postscript figures, to be published in Physical Review Letter

    Radiative and Auger decay data for modelling nickel K lines

    Full text link
    Radiative and Auger decay data have been calculated for modelling the K lines in ions of the nickel isonuclear sequence, from Ni+^+ up to Ni27+^{27+}. Level energies, transition wavelengths, radiative transition probabilities, and radiative and Auger widths have been determined using Cowan's Hartree--Fock with Relativistic corrections (HFR) method. Auger widths for the third-row ions (Ni+^+--Ni10+^{10+}) have been computed using single-configuration average (SCA) compact formulae. Results are compared with data sets computed with the AUTOSTRUCTURE and MCDF atomic structure codes and with available experimental and theoretical values, mainly in highly ionized ions and in the solid state.Comment: submitted to ApJS. 42 pages. 12 figure
    corecore