3,522 research outputs found

    Deep Unsupervised Learning using Nonequilibrium Thermodynamics

    Full text link
    A central problem in machine learning involves modeling complex data-sets using highly flexible families of probability distributions in which learning, sampling, inference, and evaluation are still analytically or computationally tractable. Here, we develop an approach that simultaneously achieves both flexibility and tractability. The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable generative model of the data. This approach allows us to rapidly learn, sample from, and evaluate probabilities in deep generative models with thousands of layers or time steps, as well as to compute conditional and posterior probabilities under the learned model. We additionally release an open source reference implementation of the algorithm

    Superconducting Dome from Holography

    Get PDF
    We find a regime in which a strongly coupled striped superconductor features a superconducting dome. This regime is signified by i) a modulating chemical potential that averages to zero, and ii) a superconducting order parameter that has a scaling dimension larger than 3/2 but less than or equal to 3. We also find that in this regime, the order parameter exhibits a mild dependence on the modulation wavelength of the stripe.Comment: 5 pages, 4 figure

    Universal interactive preferences

    Get PDF
    We prove that a universal preference type space exists under much more general conditions than those postulated by Epstein and Wang (1996). To wit, it is enough that preferences can be encoded by a countable collection of continuous functionals, while the preferences themselves need not necessarily be continuous or regular, like, e.g., in the case of lexicographic preferences. The proof relies on a far-reaching generalization of a method developed by Heifetz and Samet (1998)

    Study of Ni and Zn doped CeOFeAs: Effect on the structural transition and specific heat capacity

    Full text link
    We have systematically studied the substitution of nonmagnetic Zn and magnetic Ni at iron sites in Ce based oxypnictide. The parent compound (CeOFeAs) shows an anomaly in resistivity around 150 K due to structural transition from tetragonal (space group: P4/nmm) to orthorhombic structure (space group: Cmma). Substitution of Zn suppresses this anomaly to lower temperature (~130 K) but Ni substitution does not show any anomaly around this temperature and the compound behaves like a metal. Further, we find that non magnetic (Zn) doping leads to higher impurity scattering as compared to magnetic Ni doping. Similar to the resistivity measurement, the specific heat shows another jump near 4 K for CeOFeAs. This is attributed to the ordering of Ce3+ moments. This peak shifts to 3.8 K for Zn substituted compound and there is no change in the ordering temperature in the Ni substituted CeOFeAs. These peaks are broadened in applied magnetic field (5 T) and the calculated magnetic entropy tends to saturate at the same value for 0 T and 5 T external magnetic field.Comment: 16 pages Text+Fig

    Distorted wurtzite unit cells: Determination of lattice parameters of non-polar a-plane AlGaN and estimation of solid phase Al content

    Full text link
    Unlike c-plane nitrides, ``non-polar" nitrides grown in e.g. the a-plane or m-plane orientation encounter anisotropic in-plane strain due to the anisotropy in the lattice and thermal mismatch with the substrate or buffer layer. Such anisotropic strain results in a distortion of the wurtzite unit cell and creates difficulty in accurate determination of lattice parameters and solid phase group-III content (x_solid) in ternary alloys. In this paper we show that the lattice distortion is orthorhombic, and outline a relatively simple procedure for measurement of lattice parameters of non-polar group III-nitrides epilayers from high resolution x-ray diffraction measurements. We derive an approximate expression for x_solid taking into account the anisotropic strain. We illustrate this using data for a-plane AlGaN, where we measure the lattice parameters and estimate the solid phase Al content, and also show that this method is applicable for m-plane structures as well

    Resonance production in central pp collisions at the CERN Omega Spectrometer

    Get PDF
    A study of resonance production in central pp collisions is presented as a function of several kinematical variables. In particular the difference in the transverse momentum (dPT) of the exchanged particles shows that undisputed qqbar mesons are suppressed at small dPT whereas glueball candidates are enhanced and in addition, the azimuthal angle phi gives information on the nature of the Pomeron.Comment: 14 pages, Latex, 5 Figure

    Anomalous Raman scattering from phonons and electrons of superconducting FeSe0.82_{0.82}

    Get PDF
    We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82_{0.82} measured from 3K to 300K in the spectral range from 60 to 1800 cm1^{-1} and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm1^{-1} exhibits a sharp increase by \sim 5% in frequency below a temperature Ts_s (\sim 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm1^{-1} and 1600 cm1^{-1}, attributed to electronic Raman scattering from (x2y2x^2-y^2)to xzxz / yzyz dd-orbitals of Fe.Comment: 19 pages, 4 figures, 1 tabl
    corecore