528 research outputs found

    Resonant Raman scattering in mercurate single crystals

    Full text link
    We report resonant electronic Raman scattering in optimally doped single layer HgBa2_2CuO4+δ_{4+\delta} (Hg-1201) and trilayer HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta} (Hg-1223) single crystals. Analysis of the B1gB_{1g} and B2g_{2g} channels in the superconducting state of Hg-1201 advocates for a gap having d-wave symmetry. In addition a resonant study B1gB_{1g} pair-breaking peak and the A1gA_{1g} peak suggests that the A1gA_{1g} peak is not directly related to the d-wave superconducting gap amplitude. Comparison with trilayer Hg-1223 demonstrates the universal behavior of this two energy scales in optimally doped cuprates.Comment: 4 pages, 4 figures, M2S-Rio (invited paper). to appear in Physica

    Evidence for two distinct energy scales in the Raman spectra of YBa2(CuNi)O6.95

    Full text link
    We report low energy electronic Raman scattering from Ni-substituted YBa2Cu3O6.95 single crystals with Tc ranging from 92.5 K to 78 K. The fully symmetrical A1g channel and the B1g channel which is sensitive to the dx2-y2 gap maximum have been explored. The energy of the B1g pair-breaking peak remains constant under Ni doping while the energy of the A1g peak scales with Tc (EA1g/Tc=5). Our data show that the A1g peak tracks the magnetic resonance peak observed in inelastic neutron scattering yielding a key explanation to the long-standing problem of the origin the A1g peak.Comment: 10 pages, 4 figures and 1 tabl

    Magnetic transitions in CaMn7O12 : a Raman observation of spin-phonon couplings

    Full text link
    The quadruple Calcium manganite (CaMn7O12) is a multiferroic material that exhibits a giant magnetically-induced ferroelectric polarization which makes it very interesting for magnetoelectric applications. Here, we report the Raman spectroscopy study on this compound of both the phonon modes and the low energy excitations from 4 K to room temperature. A detailed study of the Raman active phonon excitations shows that three phonon modes evidence a spin-phonon coupling at TN2 = 50 K. In particular, we show that the mode at 432 cm-1 associated to Mn(B)O6 (B position of the perovskite) rotations around the [111] cubic diagonal is impacted by the magnetic transition at 50 K and its coupling to the new modulation of the Mn spin in the (a,b) plane. At low energies, two large low energy excitations are observed at 25 and 47 cm-1. The first one disappears at 50 K and the second one at 90 K. We have associated these excitations to electro-magneto-active modes

    Coupling between quasiparticles and a bosonic mode in the normal state of HgBa2_2CuO4+δ_{4+\delta}

    Full text link
    We report a doping dependent study of the quasiparticles dynamics in HgBa2_2CuO4+δ_{4+\delta} via Electronic Raman Scattering. A well-defined energy scale is found in the normal state dynamics of the quasiparticles over a broad doping range. It is interpreted as evidence for coupling between the quasiparticles and a collective bosonic mode whose energy scale depend only weakly with doping. We contrast this behavior with that of the superconducting gap whose amplitude near the node continuously decreases towards the underdoped regime. We discuss the implications of our findings on the nature of the collective mode and argue that electron-phonon coupling is the most natural explanation.Comment: 5 pages, 4 figure

    Doping dependence of the lattice dynamics in Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 studied by Raman spectroscopy

    Full text link
    We report Raman scattering spectra of iron-pnictide superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 single crystals with varying cobalt xx content. Upon cooling through the tetragonal-to-orthorhombic transition, we observe a large splitting of the Eg_g in-plane phonon modes involving Fe and As displacements. The splitting of the in-plane phonons at the transition is strongly reduced upon doping and disappears for x=0.06x=0.06 qualitatively following the trend displayed by the Fe magnetic moment. The origin of the splitting is discussed in terms of magnetic frustration inherent to iron-pnictide systems and we argue that such enhanced splitting may be linked to strong spin-phonon coupling.Comment: 6 pages, 6 figure

    Impact of the Spin Density Wave Order on the Superconducting Gap of Ba(Fe1−x_{1-x}Cox_x)2_2As2_2

    Full text link
    We report a doping dependent electronic Raman scattering measurements on iron-pnictide superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 single crystals. A strongly anisotropic gap is found at optimal doping for x=0.065 with Δmax∼5Δmin\Delta_{max}\sim 5\Delta_{min}. Upon entering the coexistence region between superconducting (SC) and spin-density-wave (SDW) orders, the effective pairing energy scale is strongly reduced. Our results are interpreted in terms of a competition between SC and SDW orders for electronic state at the Fermi level. Our findings advocate for a strong connection between the SC and SDW gaps anisotropies which are both linked to interband interactions.Comment: 4 pages, 3 figure
    • …
    corecore