7,415 research outputs found
Cavity optomechanics with stoichiometric SiN films
We study high-stress SiN films for reaching the quantum regime with
mesoscopic oscillators connected to a room-temperature thermal bath, for which
there are stringent requirements on the oscillators' quality factors and
frequencies. Our SiN films support mechanical modes with unprecedented products
of mechanical quality factor and frequency reaching Hz. The SiN membranes exhibit a low optical absorption
characterized by Im at 935 nm, representing a 15 times
reduction for SiN membranes. We have developed an apparatus to simultaneously
cool the motion of multiple mechanical modes based on a short, high-finesse
Fabry-Perot cavity and present initial cooling results along with future
possibilities.Comment: 4 pages, 5 figure
Use of remote sensing and GIS in mapping the environmental sensitivity areas for desertification of Egyptian territory
International audienceDesertification is defined in the first art of the convention to combat desertification as "land degradation in arid, semiarid and dry sub-humid areas resulting from climatic variations and human activities". Its consequence include a set of important processes which are active in arid and semi arid environment, where water is the main limiting factor of land use performance in such ecosystem . Desertification indicators or the groups of associated indicators should be focused on a single process. They should be based on available reliable information sources, including remotely sensed images, topographic data (maps or DEM'S), climate, soils and geological data. The current work aims to map the Environmental Sensitivity Areas (ESA's) to desertification in whole territory of Egypt at a scale of 1:1 000 000. ETM satellite images, geologic and soil maps were used as main sources for calculating the index of Environmental Sensitivity Areas (ESAI) for desertification. The algorism is adopted from MEDALLUS methodology as follows; ESAI = (SQI * CQI * VQI)1/3 Where SQI is the soil quality index, CQI is the climate quality index and VQI is the vegetation quality index. The SQI is based on rating the parent material, slope, soil texture, and soil depth. The VQI is computed on bases of rating three categories (i.e. erosion protection, drought resistance and plant cover). The CQI is based on the aridity index, derived from values of annual rainfall and potential evapotranspiration. Arc-GIS 9 software was used for the computation and sensitivity maps production. The results show that the soil of the Nile Valley are characterized by a moderate SQI, however the those in the interference zone are low soil quality indexed. The dense vegetation of the valley has raised its VQI to be good, however coastal areas are average and interference zones are low. The maps of ESA's for desertification show that 86.1% of Egyptian territory is classified as very sensitive areas, while 4.3% as Moderately sensitive, and 9.6% as sensitive. It can be concluded that implementing the maps of sensitivity to desertification is rather useful in the arid and semi arid areas as they give more likely quantitative trend for frequency of sensitive areas. The integration of different factors contributing to desertification sensitivity may lead to plan a successful combating. The usage of space data and GIS proved to be suitable tools to rely estimation and to fulfill the needed large computational requirements. They are also useful in visualizing the sensitivity situation of different desertification parameters
Evidence for Induced Magnetization in Superconductor-Ferromagnet Hetero-structures: a Scanning Tunnelling Spectroscopy Study
We performed scanning tunneling spectroscopy of c-axis oriented YBCO films on
top of which ferromagnetic SRO islands were grown epitaxially in-situ. When
measured on the ferromagnetic islands, the density of states exhibits small
gap-like features consistent with the expected short range penetration of the
order parameter into the ferromagnet. However, anomalous split-gap structures
are measured on the superconductor in the vicinity of ferromagnetic islands.
This observation may provide evidence for the recently predicted induced
magnetization in the superconductor side of a superconductor/ ferromagnet
junction. The length scale of the effect inside the superconductor was found to
be an order of magnitude larger than the superconducting coherence length. This
is inconsistent with the theoretical prediction of a penetration depth of only
a few superconducting coherence lengths. We discuss a possible origin for this
discrepancy
The interaction of unidirectional winds with an isolated barchan sand dune
Velocity profile measurements are determined on and around a barchan dune model inserted in the roughness layer on the tunnel floor. A theoretical investigation is made into the factors influencing the rate of sand flow around the dune. Flow visualization techniques are employed in the mapping of streamlines of flow on the dune's surface. Maps of erosion and deposition of sand are constructed for the barchan model, utilizing both flow visualization techniques and friction velocities calculated from the measured velocity profiles. The sediment budget found experimentally for the model is compared to predicted and observed results reported. The comparison shows fairly good agreement between the experimentally determined and predicted sediment budgets
Observation of two distinct pairs fluctuation lifetimes and supercurrents in the pseudogap regime of cuprate junctions
Pairs fluctuation supercurrents and inverse lifetimes in the pseudogap regime are reported. These were measured on epitaxial c-axis junctions of the cuprates, with a PrBa[subscript 2]Cu[subscript 3]O[subscript 7−δ] barrier sandwiched in between two YBa[subscript 2]Cu[subscript 3]O[subscript 7−δ] or doped YBa[subscript 2]Cu[subscript 3]O[subscript y] electrodes, with or without magnetic fields parallel to the a-b planes. All junctions had a T[subscript c](high)≈85–90 K and a T[subscript c](low)≈50–55 K electrodes, allowing us to study pairs fluctuation supercurrents and inverse lifetimes in between these two temperatures. In junctions with a pseudogap electrode under zero field, an excess current due to pair fluctuations was observed which persisted at temperatures above T[subscript c](low), in the pseudogap regime, and up to about T[subscript c](high). No such excess current was observed in junctions without an electrode with a pseudogap. The measured conductance spectra at temperatures above T[subscript c](low) were fitted using a modified fluctuations model by Scalapino [Phys. Rev. Lett. 24, 1052 (1970)] of a junction with a serial resistance. We found that in the pseudogap regime, the conductance vs voltage consists of a narrow peak sitting on top of a very broad peak. This yielded two distinct pairs fluctuation lifetimes in the pseudogap electrode which differ by an order of magnitude up to about T[subscript c](high). Under in-plane fields, these two lifetime values remain separated in two distinct groups, which varied with increasing field moderately. We also found that detection of Amperian pairing [Phys. Rev. X 4, 031017 (2014)] in our cuprate junctions is not feasible, due to Josephson vortices penetration into the superconducting electrodes which drove the necessary field above the depairing field.National Science Foundation (U.S.) (Grant DRM-1522575
Energy and Momentum densities of cosmological models, with equation of state , in general relativity and teleparallel gravity
We calculated the energy and momentum densities of stiff fluid solutions,
using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes,
in both general relativity and teleparallel gravity. In our analysis we get
different results comparing the aforementioned complexes with each other when
calculated in the same gravitational theory, either this is in general
relativity and teleparallel gravity. However, interestingly enough, each
complex's value is the same either in general relativity or teleparallel
gravity. Our results sustain that (i) general relativity or teleparallel
gravity are equivalent theories (ii) different energy-momentum complexes do not
provide the same energy and momentum densities neither in general relativity
nor in teleparallel gravity. In the context of the theory of teleparallel
gravity, the vector and axial-vector parts of the torsion are obtained. We show
that the axial-vector torsion vanishes for the space-time under study.Comment: 15 pages, no figures, Minor typos corrected; version to appear in
International Journal of Theoretical Physic
Energy and Momentum Distributions of Kantowski and Sachs Space-time
We use the Einstein, Bergmann-Thomson, Landau-Lifshitz and Papapetrou
energy-momentum complexes to calculate the energy and momentum distributions of
Kantowski and Sachs space-time. We show that the Einstein and Bergmann-Thomson
definitions furnish a consistent result for the energy distribution, but the
definition of Landau-Lifshitz do not agree with them. We show that a signature
switch should affect about everything including energy distribution in the case
of Einstein and Papapetrou prescriptions but not in Bergmann-Thomson and
Landau-Lifshitz prescriptions.Comment: 12 page
- …
