35,470 research outputs found

    Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid

    Get PDF
    In this paper we examine some general features of the time-dependent dynamics of drop deformation and breakup at low Reynolds numbers. The first aspect of our study is a detailed numerical investigation of the ‘end-pinching’ behaviour reported in a previous experimental study. The numerics illustrate the effects of viscosity ratio and initial drop shape on the relaxation and/or breakup of highly elongated droplets in an otherwise quiescent fluid. In addition, the numerical procedure is used to study the simultaneous development of capillary-wave instabilities at the fluid-fluid interface of a very long, cylindrically shaped droplet with bulbous ends. Initially small disturbances evolve to finite amplitude and produce very regular drop breakup. The formation of satellite droplets, a nonlinear phenomenon, is also observed

    From Microscales to Macroscales in 3D: Selfconsistent Equation of State for Supernova and Neutron Star Models

    Full text link
    First results from a fully self-consistent, temperature-dependent equation of state that spans the whole density range of neutron stars and supernova cores are presented. The equation of state (EoS) is calculated using a mean-field Hartree-Fock method in three dimensions (3D). The nuclear interaction is represented by the phenomenological Skyrme model in this work, but the EoS can be obtained in our framework for any suitable form of the nucleon-nucleon effective interaction. The scheme we employ naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state is calculated across phase transitions without recourse to interpolation techniques between density regimes described by different physical models. EoS tables are calculated in the wide range of densities, temperature and proton/neutron ratios on the ORNL NCCS XT3, using up to 2000 processors simultaneously.Comment: 6 pages, 11 figures. Published in conference proceedings Journal of Physics: Conference Series 46 (2006) 408. Extended version to be submitted to Phys. Rev.

    Finite Nuclei in the Quark-Meson Coupling (QMC) Model

    Get PDF
    We report the first use of the effective QMC energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the non-relativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having clear physical basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist however multiple Skyrme paramater sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, as derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.Comment: 9 pages, 1 table, 4 figures; in print in Phys. Rev. Letters. A minor change in the abstract, a few typos corrected and some small technical adjustments made to comply with the journal regulation

    Quantitative test of general theories of the intrinsic laser linewidth

    Full text link
    We perform a first-principles calculation of the quantum-limited laser linewidth, testing the predictions of recently developed theories of the laser linewidth based on fluctuations about the known steady-state laser solutions against traditional forms of the Schawlow-Townes linewidth. The numerical study is based on finite-difference time-domain simulations of the semiclassical Maxwell-Bloch lasing equations, augmented with Langevin force terms, and thus includes the effects of dispersion, losses due to the open boundary of the laser cavity, and non-linear coupling between the amplitude and phase fluctuations (α\alpha factor). We find quantitative agreement between the numerical results and the predictions of the noisy steady-state ab initio laser theory (N-SALT), both in the variation of the linewidth with output power, as well as the emergence of side-peaks due to relaxation oscillations.Comment: 24 pages, 10 figure

    Classification of Quantum Hall Universality Classes by $\ W_{1+\infty}\ $ symmetry

    Full text link
    We show how two-dimensional incompressible quantum fluids and their excitations can be viewed as  W1+ \ W_{1+\infty}\ edge conformal field theories, thereby providing an algebraic characterization of incompressibility. The Kac-Radul representation theory of the  W1+ \ W_{1+\infty}\ algebra leads then to a purely algebraic complete classification of hierarchical quantum Hall states, which encompasses all measured fractions. Spin-polarized electrons in single-layer devices can only have Abelian anyon excitations.Comment: 11 pages, RevTeX 3.0, MPI-Ph/93-75 DFTT 65/9
    corecore