85,057 research outputs found

    Non-Hermitian topology of spontaneous magnon decay

    Full text link
    Spontaneous magnon decay is a generic feature of the magnetic excitations of anisotropic magnets and isotropic magnets with non-collinear order. In this paper, we argue that the effect of interactions on one-magnon states can, under many circumstances, be treated in terms of an effective, energy independent, non-Hermitian Hamiltonian for the magnons. In the vicinity of Dirac or Weyl touching points, we show that the spectral function has a characteristic anisotropy arising from topologically protected exceptional points or lines in the non-Hermitian spectrum. Such features can, in principle, be detected using inelastic neutron scattering or other spectroscopic probes. We illustrate this physics through a concrete example: a honeycomb ferromagnet with Dzyaloshinskii-Moriya exchange. We perform interacting spin wave calculations of the structure factor and spectral function of this model, showing good agreement with results from a simple effective non-Hermitian model for the splitting of the Dirac point. Finally, we argue that the zoo of known topological protected magnon band structures may serve as a nearly ideal platform for realizing and exploring non-Hermitian physics in solid-state systems.Comment: 4+epsilon page

    Results of a study to detect spawning marks in otoliths of Northern anchovy, Engraulis mordax

    Get PDF
    An attempt was made to detect spawning marks on the otoliths (sagittae) of the northern anchovy, Engraulis mordax, from waters of the Southern California Bight. While no spawning marks were detected, a modification of an existing technique for observing daily growth rings was developed. A discussion is presented on detecting spawning checks in the northern anchovy. (15pp.

    A commuting q-analogue of the addition formula for disk polynomials

    Full text link
    Starting from the addition formula for qq-disk polynomials, which is an identity in non-commuting variables, we establish a basic analogue in commuting variables of the addition and product formula for disk polynomials. These contain as limiting cases the addition and product formula for little qq-Legendre polynomials. As qq tends to 11 the addition and product formula for disk polynomials are recovered

    Arbuscular mycorrhizal fungi in organic systems

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) are potential contributors to plant nutrition and pathogen suppression in low input agricultural systems, although individual species of AMF vary widely in their functional attributes. Recent studies at HRI and elsewhere have suggested that in some agricultural systems inoculum of AMF is substantially lower under conventional management relative to that under organic management. Further studies have suggested that conventional management selects AMF communities with limited benefits to their plant hosts relative to those in organic systems. There is a need to investigate the generality of these findings, and their implications for the productivity of organic systems, particularly during the period following conversion to organic management. The current project was designed to pull together existing understanding of the role, and potential role, of AMF in organic systems, and to identify sites and develop methods for use in a subsequent research programme. The project had three objectives: 01 To deliver a literature review covering current knowledge of the role of AMF in conventional and organic agricultural systems. The review considered the ways in which management influences the structure and functioning of AMF communities, including their contributions under conventional and organic management, and recommendations for future research needs. 02 To establish the extent of differences in AMF inoculum between organic and conventional systems, covering a range of management practices. Paired organic and conventional fields at 12 sites from across England were selected to investigate the relationships between management, AMF communities and soil chemistry. Organic and conventionally managed soils showed no significant difference in soil chemical properties (Organic C, total N, total P, extractable P, K, Mg). However, organically managed soils had greater AMF spore numbers and root colonisation potential, and therefore higher AMF inoculum potential, than conventionally managed soil. The relative difference in AMF spore numbers between organic and conventionally managed fields increased with time since conversion. Differences in AMF inoculum potential between organic and conventionally managed fields, and between farm sites, could not be related to differences in soil chemistry. 03 To develop a method suitable for characterising AM fungus communities in soil libraries, based on 18S rRNA terminal restriction fragment length polymorphism (T-RFLP) T-RFLP was shown to provide a rapid semi-quantitative method for analysis of AMF community diversity. However it was clear that primers currently used to amplify AMF are selective and do not allow diversity of the whole AMF community to be determined. Additionally these primers amplify contaminant fungi which need to be removed from the T-RFLP profile prior to analysis. However, contaminant diversity was shown to be low. The project has identified sites and techniques which could be valuable in future research to study the role of AMF under organic management. The study has also highlighted a number of key areas in which further research is needed in order to harness AMF to improve sustainability and productivity of organic and other agricultural systems. In particular, there is a need to determine the extent to which AMF diversity varies between organic and conventional management, the rate and mechanisms by which AMF diversity increases following conversion to organic production, the relationships between AMF diversity and crop nutrition/ pathogen control, and the soil factors controlling the effectiveness of AMF inoculum

    Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields

    Get PDF
    The comparison of satellite and model aerosol optical depth (AOD) fields provides useful information on the strengths and weaknesses of both. However, the sampling of satellite and models is very different and some subjective decisions about data selection and aggregation must be made in order to perform such comparisons. This work examines some implications of these decisions, using GlobAerosol AOD retrievals at 550 nm from Advanced Along-Track Scanning Radiometer (AATSR) measurements, and aerosol fields from the GEOS-Chem chemistry transport model. It is recommended to sample the model only where the satellite flies over on a particular day; neglecting this can cause regional differences in model AOD of up to 0.1 on monthly and annual timescales. The comparison is observed to depend strongly upon thresholds for sparsity of satellite retrievals in the model grid cells. Requiring at least 25% coverage of the model grid cell by satellite data decreases the observed difference between the two by approximately half over land. The impact over ocean is smaller. In both model and satellite datasets, there is an anticorrelation between the proportion <i>p</i> of a model grid cell covered by satellite retrievals and the AOD. This is attributed to small <i>p</i> typically occuring due to high cloud cover and lower AODs being found in large clear-sky regions. Daily median AATSR AODs were found to be closer to GEOS-Chem AODs than daily means (with the root mean squared difference being approximately 0.05 smaller). This is due to the decreased sensitivity of medians to outliers such as cloud-contaminated retrievals, or aerosol point sources not included in the model

    Dynamics of vegetation and soils of oak/saw palmetto scrub after fire: Observations from permanent transects

    Get PDF
    Ten permanent 15 m transects previously established in two oak/saw palmetto scrub stands burned in December 1986, while two transects remained unburned. Vegetation in the greater than 0.5 m and the less than 0.5 m layers on these transects was sampled at 6, 12, 18, 24, and 36 months postburn and determined structural features of the vegetation (height, percent bare ground, total cover). The vegetation data were analyzed from each sampling by height layer using detrended correspondence analysis ordination. Vegetation data for the greater than 0.5 m layer for the entire time sequence were combined and analyzed using detrended correspondence analysis ordination. Soils were sampled at 6, 12, 18, and 24 months postburn and analyzed for pH, conductivity, organic matter, exchangeable cations (Ca, Mg, K, Na), NO3-N, NH4-N, Al, available metals (Cu, Fe, Mn, Zn), and PO4-P. Shrub species recovered at different rates postfire with saw palmetto reestablishing cover greater than 0.5 m within one year, but the scrub oaks had not returned to preburn cover greater than 0.5 m in 3 years after the fire. These differences in growth rates resulted in dominance shifts after the fire with saw palmetto increasing relative to the scrub oaks. Overall changes in species richness were minor, although changes occurred in species richness by height layers due to different growth rates. Soils of well drained and poorly drained sites differed markedly. Soil responses to the fire appeared minor. Soil pH increased at 6 and 12 months postfire; calcium increased at 6 months postburn. Nitrate-nitrogen increased at 12 months postburn. Low values of conductivity, PO4-P, Mg, K, Na, and Fe at 12 months postburn may be related to heavy rainfall the preceding month. Seasonal variability in some soil parameters appeared to occur

    The Cepheid Distance Scale: recent progress in fundamental techniques

    Get PDF
    This review examines progress on the Pop I, fundamental-mode Cepheid distance scale with emphasis on recent developments in geometric and quasi-geometric techniques for Cepheid distance determination. Specifically I examine the surface brightness method, interferometric pulsation method, and trigonometric measurements. The three techniques are found to be in excellent agreement for distance measures in the Galaxy. The velocity p-factor is of crucial importance in the first two of these methods. A comparison of recent determinations of the p-factor for Cepheids demonstrates that observational measures of p and theoretical predictions agree within their uncertainties for Galactic Cepheids.Comment: An invited review at the Santa Fe, NM, conference -- Stellar Pulsation: Challenges for Theory and Observation; May 31-June 5, 2009 10 pages, 8 figure
    • ā€¦
    corecore