7,223 research outputs found
Communicating via ignorance: Increasing communication capacity via superposition of order
Classically, no information can be transmitted through a depolarising, that
is a completely noisy, channel. We show that by combining a depolarising
channel with another channel in an indefinite causal order---that is, when
there is superposition of the order that these two channels were applied---it
becomes possible to transmit significant information. We consider two limiting
cases. When both channels are fully-depolarising, the ideal limit is
communication of 0.049 bits; experimentally we achieve
bits. When one channel is fully-depolarising,
and the other is a known unitary, the ideal limit is communication of 1 bit. We
experimentally achieve 0.640.02 bits. Our results offer intriguing
possibilities for future communication strategies beyond conventional quantum
Shannon theory
An admittance shaping controller for exoskeleton assistance of the lower extremities
We present a method for lower-limb exoskeleton control that defines assistance as a desired dynamic response for the human leg. Wearing the exoskeleton can be seen as replacing the leg's natural admittance with the equivalent admittance of the coupled system. The control goal is to make the leg obey an admittance model defined by target values of natural frequency, peak magnitude and zero-frequency response. No estimation of muscle torques or motion intent is necessary. Instead, the controller scales up the coupled system's sensitivity transfer function by means of a compensator employing positive feedback. This approach increases the leg's mobility and makes the exoskeleton an active device capable of performing net positive work on the limb. Although positive feedback is usually considered destabilizing, here performance and robust stability are successfully achieved through a constrained optimization that maximizes the system's gain margins while ensuring the desired location of its dominant poles
Rebounce and Black hole formation in a Gravitational Collapse Model with Vanishing Radial Pressure
We examine spherical gravitational collapse of a matter model with vanishing
radial pressure and non-zero tangential pressure. It is seen analytically that
the collapsing cloud either forms a black hole or disperses depending on values
of the initial parameters which are initial density, tangential pressure and
velocity profile of the cloud. A threshold of black hole formation is observed
near which a scaling relation is obtained for the mass of black hole, assuming
initial profiles to be smooth. The similarities in the behaviour of this model
at the onset of black hole formation with that of numerical critical behaviour
in other collapse models are indicated.Comment: 15 pages, To be published in Gen.Rel.Gra
Integral admittance shaping: A unified framework for active exoskeleton control
© 2015 Elsevier B.V. Current strategies for lower-limb exoskeleton control include motion intent estimation, which is subject to inaccuracies in muscle torque estimation as well as modeling error. Approaches that rely on the phases of a uniform gait cycle have proven effective, but lack flexibility to aid other kinds of movement. This research aims at developing a more versatile control that can assist the lower limbs independently of the movement attempted. Our control strategy is based on modifying the dynamic response of the human limbs, specifically their mechanical admittance. Increasing the admittance makes the lower limbs more responsive to any muscle torque generated by the human user. We present Integral Admittance Shaping, a unified mathematical framework for: (a) determining the desired dynamic response of the coupled system formed by the human limb and the exoskeleton, and (b) synthesizing an exoskeleton controller capable of achieving said response. The present control formulation focuses on single degree-of-freedom exoskeleton devices providing performance augmentation. The algorithm generates a desired shape for the frequency response magnitude of the integral admittance (torque-to-angle relationship) of the coupled system. Simultaneously, it generates an optimal feedback controller capable of achieving the desired response while guaranteeing coupled stability and passivity. The potential effects of the exoskeleton's assistance are motion amplification for the same joint torque, and torque reduction for the same joint motion. The robustness of the derived exoskeleton controllers to parameter uncertainties is analyzed and discussed. Results from initial trials using the controller on an experimental exoskeleton are presented as well
The Existence of Einstein Static Universes and their Stability in Fourth order Theories of Gravity
We investigate whether or not an Einstein Static universe is a solution to
the cosmological equations in gravity. It is found that only one class
of theories admits an Einstein Static model, and that this class is
neutrally stable with respect to vector and tensor perturbations for all
equations of state on all scales. Scalar perturbations are only stable on all
scales if the matter fluid equation of state satisfies
. This result is remarkably similar to
the GR case, where it was found that the Einstein Static model is stable for
.Comment: Minor changes, To appear in PR
Recommended from our members
Is there regime behavior in monsoon convection in the late 20th century?
Mixture model techniques are applied to a daily index of monsoon convection from ERA‐40 reanalysis to show regime behavior. The result is the existence of two significant regimes showing preferred locations of convection within the Asia/Western‐North Pacific domain, with some resemblance to active‐break events over India. Simple trend analysis over 1958–2001 shows that the first regime has become less frequent while the second becomes much more dominant. Both undergo a change in structure contributing to the total OLR trend over the ERA‐40 period. Stratifying the data according to a large‐scale dynamical index of monsoon interannual variability, we show the regime occurrence to be strongly perturbed by the seasonal condition, in agreement with conceptual ideas. This technique could be used to further examine predictability issues relating the seasonal mean and intraseasonal monsoon variability or to explore changes in monsoon behavior in centennial‐scale model integrations
Quantum Persistence: A Random Walk Scenario
In this paper we extend the concept of persistence, well defined for
classical stochastic dynamics, to the context of quantum dynamics. We
demonstrate the idea via quantum random walk and a successive measurement
scheme, where persistence is defined as the time during which a given site
remains unvisited by the walker. We also investigated the behavior of related
quantities, e.g., the first-passage time and the succession probability (newly
defined), etc. The study reveals power law scaling behavior of these quantities
with new exponents. Comparable features of the classical and the quantum walks
are discussed.Comment: 6 pages, 6 figures, revtex4. To be published in PR
Integral Admittance Shaping for Exoskeleton Control
A wide variety of strategies have been developed for assisting human locomotion using powered exoskeletons. Although these strategies differ in their aims as well as the control methods employed, they have the implicit property of causing a virtual modification of the dynamic response of the human limb. We use this property of the exoskeletons action to formulate a unified control design framework called Integral Admittance Shaping, which designs exoskeleton controllers capable of producing the desired dynamic response for the assisted limb. In this framework, a virtual increase in the admittance of the limb is produced by coupling it to an exoskeleton that exhibits active behavior. Specifically, our framework shapes the magnitude profile of the integral admittance (i.e. torque-to-angle relationship) of the coupled human-exoskeleton system, such that the desired assistance is achieved. This framework also ensures that the coupled stability and passivity are guaranteed. This paper presents a formulation of Integral Admittance Shaping for single degree-of-freedom (1-DOF) exoskeleton devices. We also present experimental results on a modified version of Honda’s Stride Management Assist (SMA) device that successfully demonstrate motion amplification of the assisted hip joint during walking
- …
