2,610 research outputs found

    Biodeteriogens at a southern Italian heritage site: Analysis and management of vascular flora on the walls of Villa Rufolo

    Get PDF
    Colonisation of vascular plants on ancient historical buildings is known to cause severe damage. The aim of the present work was to analyse the deteriogenic vascular flora of Villa Rufolo in Ravello, one of the most famous heritage sites in southern Italy. The deteriogenic flora were analysed in terms of diversity, structure, chorology, origin and potential damage to the building. The hazard index (HI) was applied to evaluate the impact of the biodeteriogens in question. The total flora included 61 taxa with the prevalence of therophytes (42.6%) and widely distributed species (42.6%), mostly derived from natural or semi-natural environments in the surrounding area (95.1%). The plant colonisation pattern showed the presence of some very harmful but not very abundant vascular plants (6.6%), including Ficus carica, Hedera helix subsp. helix, Capparis orientalis and Parthenocissus tricuspidata. Analysing the potential deteriogenic impact of each species (DI), a new index proposed by the authors, it emerged that the most dangerous were Centranthus ruber subsp. ruber and Parietaria judaica. Methods for the eradication of the most damaging species are discussed and proposed

    The Role of Lichens, Mosses, and Vascular Plants in the Biodeterioration of Historic Buildings: A Review

    Get PDF
    Biodeterioration is defined as the alteration of a given substrate due to a combination of physical and chemical factors produced by living organisms when attached to such materials. This phenomenon attracts scientific research attention due to its risk in causing destruction to outdoor cultural rock heritage sites. In this review, an update on the state-of-art regarding the biodeterioration phenomenon is represented in order to highlight the type of colonizing vegetation and possible mechanisms behind the corresponding deterioration. For this reason, 62 articles with a focus on lichens, mosses, and higher plants were investigated by evaluating the role of construction materials and different plant species related to the hazard index. The results showed that trees and shrubs are the most harmful plant life forms, for example, Ficus carica, Ailanthus altissima, and Capparis spinosa, while regarding building materials, those characterized by high porosity, such as andesite and argillaceous limestone, are more vulnerable to plant colonization. Further studies are needed to examine in detail the relationship between colonizing organisms, intrinsic elements of the substrate, and external factors, as well as the refinement of measures to prevent and control colonization by plants

    Climatic and anthropogenic factors affect Ailanthus altissima invasion in a Mediterranean region

    Get PDF
    Ailanthus altissima is an aggressive invasive tree worldwide, but the ecological factors that lead to the spread of this species in Mediterranean ecosystems are still unclear. Here we aim to identify such factors, focusing on the interaction of human activity with climatic conditions. We determined the occurrence and abundance of Ailanthus in 240 sites and studied their relationship with 20 variables representing climatic, geographic, and topographic factors, as well as land use, in the region of Campania (southern Italy). Overall, we found that temperature and rainfall in Campania are suitable for Ailanthus, with the only major constraint being the temperature at an altitude exceeding 900 m a.s.l. We found that Ailanthus is unable to spread where the mean annual temperature is lower than 11.1 °C. By contrast, precipitation variables showed poor correlation with Ailanthus distribution, suggesting that rainfall in the selected study sites is suitable to sustain the growth of this tree. About land use variables, roads were the primary landscape feature along which this species spread and invaded new areas. Roads probably combine high propagule pressure and favorable growing conditions in terms of available resources i.e., light, water, and mineral nutrients, that allow Ailanthus to establish and spread along roadside edges in different ecosystems. In conclusion, we found that climate and human-associated variables are correlated with the current occurrence of Ailanthus, with the temperature being more influential at high elevation sites and road distance playing a prominent role in low elevation areas

    Decomposition and temperature sensitivity of fine root and leaf litter of 43 mediterranean species

    Get PDF
    Aims: Data on the decomposition of fine roots are scarce for the Mediterranean basin. This work aims to compare chemical traits, decomposition rate, and temperature sensitivity (Q10) for root and leaf litter of 43 Mediterranean species. Methods: We carried out a two-years litterbag decomposition experiment using 43 fine roots litter and leaf litter types incubated in laboratory conditions at three different temperatures, i.e. 4 °C, 14 °C, and 24 °C. Litter was characterized for carbon (C), nitrogen (N), lignin and cellulose concentration, C/N, and lignin/N ratios. Results: Fine root litter had lower N content but higher lignin concentration, lignin/N, and C/N ratios compared to leaf litter. The decay rate of fine root litter was slower than leaf litter. For both tissues, the decay rate was negatively associated with lignin concentration, lignin/N, and C/N ratios but positively with N concentration. Q10 was higher for fine root than leaf litter, with a positive correlation with lignin while negative with N concentration. Conclusions: Our findings demonstrate a higher Q10 accompanied by a slower decomposition rate of fine root litter compared to leaf litter in Mediterranean ecosystems. These results must be considered in modeling organic C at the ecosystem scale

    Biochar as plant growth promoter: Better off alone or mixed with organic amendments?

    Get PDF
    Biochar is nowadays largely used as a soil amendment and is commercialized worldwide. However, in temperate agro-ecosystems the beneficial effect of biochar on crop productivity is limited, with several studies reporting negative crop responses. In this work, we studied the effect of 10 biochar and 9 not pyrogenic organic amendments (NPOA), using pure and in all possible combinations on lettuce growth (Lactuca sativa). Organic materials were characterized by 13C-CPMAS NMR spectroscopy and elemental analysis (pH, EC, C, N, C/N and H/C ratios). Pure biochars and NPOAs have variable effects, ranging from inhibition to strong stimulation on lettuce growth. For NPOAs, major inhibitory effects were found with N poor materials characterized by high C/N and H/C ratio. Among pure biochars, instead, those having a low H/C ratio seem to be the best for promoting plant growth. When biochars and organic amendments were mixed, non-additive interactions, either synergistic or antagonistic, were prevalent. However, the mixture effect on plant growth was mainly dependent on the chemical quality of NPOAs, while biochar chemistry played a secondary role. Synergisms were prevalent when N rich and lignin poor materials were mixed with biochar. On the contrary, antagonistic interactions occurred when leaf litter or woody materials were mixed with biochar. Further research is needed to identify the mechanisms behind the observed non-additive effects and to develop biochar-organic amendment combinations that maximize plant productivity in different agricultural systems

    Pea-Wheat Rotation Affects Soil Microbiota Diversity, Community Structure, and Soilborne Pathogens

    Get PDF
    Intensive cultivation based on monocultures has a significant impact on ecosystem function, and sustainable agriculture must rely on alternative methods, including crop rotation. On the Canadian prairies, the use of pulse crops is a common practice, but few studies have investigated the impact on soil microorganisms. Here, we studied the effect of pea, wheat, pea–wheat rotation, and fallow in bulk soil bacterial and fungal communities. We characterized soil microbiota by high-throughput sequencing of 16S and 18S rRNA genes for bacteria and eukaryotes. Different crop rotations and fallow significantly modified soil community composition, as well as bacterial and fungal diversity. Pea alone caused a strong reduction of bacterial and fungal richness and diversity compared to wheat, pea–wheat rotation, and fallow. Notably, pea–wheat rotation increased the abundance of Fusarium graminearum compared to other management practices. The bacterial community was less responsive to crop rotation identity compared to the fungal microbiota, and we found minor differences at the phylum level, with an increase in Actinobacteria in fallow and Firmicutes in wheat. In summary, our study demonstrated that rotations alter bulk soil microbial community diversity and composition in Canadian prairies. The frequent use of pea in rotation with wheat should be carefully evaluated, balancing their ecological effects on nitrogen mineralization, water conservation, and impact on beneficial, as well as pathotrophic, fungi

    Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline

    Get PDF
    Understanding processes controlling forest dynamics has become particularly important in the context of ongoing climate change, which is altering the ecological fitness and resilience of species worldwide. However, whether forest communities would be threatened by projected macroclimate change or unaffected due to the controlling effect of local site conditions is still a matter for debate. After all, forest canopy buffer climate extremes and promote microclimatic conditions, which matters for functional plant response, and act as refugia for understory species in a changing climate. Yet precisely how microclimatic conditions change in response to climate warming will depend on the extent to which vegetation structure and local topography shape air and soil temperature. In this study, we posited that forest microclimatic buffering is sensitive to local topographic conditions and canopy cover, and using meteorological stations equipped with data-loggers we measured this effect during 1 year across a climate gradient (considering aspect as a surrogate of local topography) in a Mediterranean beech treeline growing in contrasting aspects in southern Italy. During the growing season, the below-canopy near-ground temperatures were, on average, 2.4 and 1.0 °C cooler than open-field temperatures for south and north-west aspects, respectively. Overall, the temperature offset became more negative (that is, lower under-canopy temperatures at the treeline) as the open-field temperature increased, and more positive (that is, higher under-canopy temperatures at the treeline) as the open-field temperature decreased. The buffering effect was particularly evident for the treeline on the south-facing slope, where cooling of near-ground temperature was as high as 8.6 °C for the maximum temperature (in August the offset peaked at 10 °C) and as high as 2.5 °C for the average temperature. In addition, compared to the south-facing slope, the northern site exhibited less decoupling from free-air environment conditions and low variability in microclimate trends that closely track the free-air biophysical environment. Although such a decoupling effect cannot wholly isolate forest climatic conditions from macroclimate regional variability in the south-facing treeline, it has the potential to partly offset the regional macroclimatic warming experienced in the forest understory due to anthropogenic climate change

    Cytokine release syndrome after CAR infusion in pediatric patients with refractory/relapsed B-ALL: is there a role for diclofenac?

    Get PDF
    BACKGROUND: Cytokine release syndrome (CRS) is a major complication after chimeric-antigen receptor T-cell treatment, characterized by an uncontrolled systemic inflammatory reaction. We investigated the potential role of diclofenac in the management of CRS in five pediatric patients treated for relapsed/refractory B-lineage acute lymphoblastic leukemia. METHODS: In case of persistent fever with fever-free intervals shorter than 3 hours, diclofenac continuous infusion was initiated, at the starting dose of 0.5 mg/Kg/day, the lowest effective pediatric dose in our experience, possibly escalated up to 1 mg/Kg/day, as per institutional guidelines. RESULTS: CRS occurred at a median of 20 hours (range 8–27) after tisagenlecleucel infusion. Diclofenac was started at a median of 20 hours (range 13–33) after fever onset. A mean of 3.07 febrile peaks without diclofenac and 0.95 with diclofenac were reported (p = 0.02). Clinical benefit was achieved by hampering the progression of tachypnea and tachycardia. Despite fever control, CRS progressed in four of the five patients, and hypotension requiring vasopressors and fluid retention, as well as hypoxia, occurred. Vasopressors were followed by 1–2 doses of tocilizumab (one in patient 2 and two in patients 3, 4, and 5), plus steroids in patients 4 and 5. CONCLUSION: Based on a limited number of patients, diclofenac leads to better fever control, which translates into symptom relief and improvement of tachycardia, but could not prevent the progression of CRS

    Topoclimate effect on treeline elevation depends on the regional framework: A contrast between Southern Alps (New Zealand) and Apennines (Italy) forests

    Get PDF
    Deciphering the spatial patterns of alpine treelines is critical for understanding the ecosystem processes involved in the persistence of tree species and their altitudinal limit. Treelines are thought to be controlled by temperature, and other environmental variables but they have rarely been investigated in regions with different land-use change legacies. Here, we systematically investigated treeline elevation in the Apennines (Italy) and Southern Alps (New Zealand) with contrasting human history but similar biogeographic trajectories, intending to identify distinct drivers that affect their current elevation and highlight their respective peculiarities. Over 3622 km of Apennines, treeline elevation was assessed in 302 mountain peaks and in 294 peaks along 4504 km of Southern Alps. The major difference between the Southern Alps and Apennines treeline limit is associated with their mountain aspects. In the Southern Alps, the scarcely anthropized Nothofagus treeline elevation was higher on the warmer equator-facing slopes than on the pole-facing ones. Contrary to what would be expected based on temperature limitation, the elevation of Fagus sylvatica treelines in the Apennines was higher on colder, pole-facing slopes than on human-shaped equator-facing, warmer mountainsides. Pervasive positive correlations were found between treeline elevation and temperature in the Southern Alps but not in the Apennines. While the position of the Fagus and Nothofagus treelines converge on similar isotherms of annual average temperature, a striking isothermal difference between the temperatures of the hottest month on which the two taxonomic groups grow exists. We conclude that actual treeline elevation reflects the ecological processes driven by a combination of local-scale topoclimatic conditions, and human disturbance legacy. Predicting dynamic processes affecting current and future alpine treeline position requires further insight into the modulating influences that are currently understood at a regional scale
    • …
    corecore