12 research outputs found

    Search for directional associations between Baikal Gigaton Volume Detector neutrino-induced cascades and high-energy astrophysical sources

    Full text link
    Baikal-GVD has recently published its first measurement of the diffuse astrophysical neutrino flux, performed using high-energy cascade-like events. We further explore the Baikal-GVD cascade dataset collected in 2018-2022, with the aim to identify possible associations between the Baikal-GVD neutrinos and known astrophysical sources. We leverage the relatively high angular resolution of the Baikal-GVD neutrino telescope (2-3 deg.), made possible by the use of liquid water as the detection medium, enabling the study of astrophysical point sources even with cascade events. We estimate the telescope's sensitivity in the cascade channel for high-energy astrophysical sources and refine our analysis prescriptions using Monte-Carlo simulations. We primarily focus on cascades with energies exceeding 100 TeV, which we employ to search for correlation with radio-bright blazars. Although the currently limited neutrino sample size provides no statistically significant effects, our analysis suggests a number of possible associations with both extragalactic and Galactic sources. Specifically, we present an analysis of an observed triplet of neutrino candidate events in the Galactic plane, focusing on its potential connection with certain Galactic sources, and discuss the coincidence of cascades with several bright and flaring blazars.Comment: 10 pages, 3 figure

    Monitoring of optical properties of deep waters of Lake Baikal in 2021-2022

    Full text link
    We present the results of the two-year (2021-2022) monitoring of absorption and scattering lengths of light with wavelength 400-620 nm within the effective volume of the deep underwater neutrino telescope Baikal-GVD, which were measured by a device Baikal-5D No.2. The Baikal-5D No.2. was installed during the 2021 winter expedition at a depth of 1180 m. The absorption and scattering lengths were measured every week in 9 spectral points. The device Baikal-5D No.2 also has the ability to measure detailed scattering and absorption spectra. The data obtained make it possible to estimate the range of changes in the absorption and scattering lengths over a sufficiently long period of time and to investigate the relationship between the processes of changes in absorption and scattering. An analysis was made of changes in absorption and scattering spectra for the period 2021-2022

    Large neutrino telescope Baikal-GVD: recent status

    Full text link
    The Baikal-GVD is a deep-underwater neutrino telescope being constructed in Lake Baikal. After the winter 2023 deployment campaign the detector consists of 3456 optical modules installed on 96 vertical strings. The status of the detector and progress in data analysis are discussed in present report. The Baikal-GVD data collected in 2018-2022 indicate the presence of cosmic neutrino flux in high-energy cascade events consistent with observations by the IceCube neutrino telescope. Analysis of track-like events results in identification of first high-energy muon neutrino candidates. These and other results from 2018-2022 data samples are reviewed in this report

    Studies of the ambient light of deep Baikal waters with Baikal-GVD

    Full text link
    The Baikal-GVD neutrino detector is a deep-underwater neutrino telescope under construction and recently after the winter 2023 deployment it consists of 3456 optical modules attached on 96 vertical strings. This 3-dimensional array of photo-sensors allows to observe ambient light in the vicinity of the Baikal-GVD telescope that is associated mostly with water luminescence. Results on time and space variations of the luminescent activity are reviewed based on data collected in 2018-2022

    Measuring muon tracks in Baikal-GVD using a fast reconstruction algorithm

    Full text link
    The Baikal Gigaton Volume Detector (Baikal-GVD) is a km3^3-scale neutrino detector currently under construction in Lake Baikal, Russia. The detector consists of several thousand optical sensors arranged on vertical strings, with 36 sensors per string. The strings are grouped into clusters of 8 strings each. Each cluster can operate as a stand-alone neutrino detector. The detector layout is optimized for the measurement of astrophysical neutrinos with energies of \sim 100 TeV and above. Events resulting from charged current interactions of muon (anti-)neutrinos will have a track-like topology in Baikal-GVD. A fast χ2\chi^2-based reconstruction algorithm has been developed to reconstruct such track-like events. The algorithm has been applied to data collected in 2019 from the first five operational clusters of Baikal-GVD, resulting in observations of both downgoing atmospheric muons and upgoing atmospheric neutrinos. This serves as an important milestone towards experimental validation of the Baikal-GVD design. The analysis is limited to single-cluster data, favoring nearly-vertical tracks.Comment: 15 pages, 6 figures, 1 table, to be published in Eur. Phys. J.

    Investigation of injection lasers at the physics institute of the academy of sciences (FIAN)

    No full text

    Pattern formation in lasers

    No full text
    corecore