68 research outputs found

    OD26 - Inverse consistency error as a validation metric for deformable image registration: preliminary implementation research

    Get PDF
    The aim of this work is to develop a novel automatic voxel-based quantitative measurement approach to evaluate the registration accuracy of a Deformable Image Registration (DIR) algorithm in clinical practice. As the Inverse Consistency Error (ICE) can be computed directly from the deformation vector field (DVF) generated by the Treatment Planning System (TPS), it appears to be a valid surrogate of standard quality assurance metrics to assess the spatial error in the registration process

    Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure.

    Get PDF
    Brefeldin A (BFA) is a fungal metabolite that disassembles the Golgi apparatus into tubular networks and causes the dissociation of coatomer proteins from Golgi membranes. We have previously shown that an additional effect of BFA is to stimulate the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa (brefeldin A-ADP-riboslyated substrate (BARS)) and that this effect greatly facilitates the Golgi-disassembling activity of the toxin. In this study, BARS has been purified from rat brain cytosol and microsequenced, and the BARS cDNA has been cloned. BARS shares high homology with two known proteins, C-terminal-binding protein 1 (CtBP1) and CtBP2. It is therefore a third member of the CtBP family. The role of BARS in Golgi disassembly by BFA was verified in permeabilized cells. In the presence of dialyzed cytosol that had been previously depleted of BARS or treated with an anti-BARS antibody, BFA potently disassembled the Golgi. However, in cytosol complemented with purified BARS, or even in control cytosols containing physiological levels of BARS, the action of BFA on Golgi disassembly was strongly inhibited. These results suggest that BARS exerts a negative control on Golgi tubulation, with important consequences for the structure and function of the Golgi complex

    What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans

    Get PDF
    Plan evaluation is a key step in the radiotherapy treatment workflow. Central to this step is the assessment of treatment plan quality. Hence, it is important to agree on what we mean by plan quality and to be fully aware of which parameters it depends on. We understand plan quality in radiotherapy as the clinical suitability of the delivered dose distribution that can be realistically expected from a treatment plan. Plan quality is commonly assessed by evaluating the dose distribution calculated by the treatment planning system (TPS). Evaluating the 3D dose distribution is not easy, however; it is hard to fully evaluate its spatial characteristics and we still lack the knowledge for personalising the prediction of the clinical outcome based on individual patient characteristics. This advocates for standardisation and systematic collection of clinical data and outcomes after radiotherapy. Additionally, the calculated dose distribution is not exactly the dose delivered to the patient due to uncertainties in the dose calculation and the treatment delivery, including variations in the patient set-up and anatomy. Consequently, plan quality also depends on the robustness and complexity of the treatment plan. We believe that future work and consensus on the best metrics for quality indices are required. Better tools are needed in TPSs for the evaluation of dose distributions, for the robust evaluation and optimisation of treatment plans, and for controlling and reporting plan complexity. Implementation of such tools and a better understanding of these concepts will facilitate the handling of these characteristics in clinical practice and be helpful to increase the overall quality of treatment plans in radiotherapy

    Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae

    Get PDF
    Procollagen (PC)-I aggregates transit through the Golgi complex without leaving the lumen of Golgi cisternae. Based on this evidence, we have proposed that PC-I is transported across the Golgi stacks by the cisternal maturation process. However, most secretory cargoes are small, freely diffusing proteins, thus raising the issue whether they move by a transport mechanism different than that used by PC-I. To address this question we have developed procedures to compare the transport of a small protein, the G protein of the vesicular stomatitis virus (VSVG), with that of the much larger PC-I aggregates in the same cell. Transport was followed using a combination of video and EM, providing high resolution in time and space. Our results reveal that PC-I aggregates and VSVG move synchronously through the Golgi at indistinguishable rapid rates. Additionally, not only PC-I aggregates (as confirmed by ultrarapid cryofixation), but also VSVG, can traverse the stack without leaving the cisternal lumen and without entering Golgi vesicles in functionally relevant amounts. Our findings indicate that a common mechanism independent of anterograde dissociative carriers is responsible for the traffic of small and large secretory cargo across the Golgi stack
    • …
    corecore