1,619 research outputs found
A nilpotent IP polynomial multiple recurrence theorem
We generalize the IP-polynomial Szemer\'edi theorem due to Bergelson and
McCutcheon and the nilpotent Szemer\'edi theorem due to Leibman. Important
tools in our proof include a generalization of Leibman's result that polynomial
mappings into a nilpotent group form a group and a multiparameter version of
the nilpotent Hales-Jewett theorem due to Bergelson and Leibman.Comment: v4: switch to TeXlive 2016 and biblate
Ramsey numbers and adiabatic quantum computing
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In
fact, for the two-color Ramsey numbers with , only nine are
currently known. We present a quantum algorithm for the computation of the
Ramsey numbers . We show how the computation of can be mapped
to a combinatorial optimization problem whose solution can be found using
adiabatic quantum evolution. We numerically simulate this adiabatic quantum
algorithm and show that it correctly determines the Ramsey numbers R(3,3) and
R(2,s) for . We then discuss the algorithm's experimental
implementation, and close by showing that Ramsey number computation belongs to
the quantum complexity class QMA.Comment: 4 pages, 1 table, no figures, published versio
How do random Fibonacci sequences grow?
We study two kinds of random Fibonacci sequences defined by and
for , (linear case) or (non-linear case), where each sign is independent and
either + with probability or - with probability (). Our
main result is that the exponential growth of for (linear
case) or for (non-linear case) is almost surely given by
where is an explicit
function of depending on the case we consider, and is an
explicit probability distribution on \RR_+ defined inductively on
Stern-Brocot intervals. In the non-linear case, the largest Lyapunov exponent
is not an analytic function of , since we prove that it is equal to zero for
. We also give some results about the variations of the largest
Lyapunov exponent, and provide a formula for its derivative
Growth and Structure of Stochastic Sequences
We introduce a class of stochastic integer sequences. In these sequences,
every element is a sum of two previous elements, at least one of which is
chosen randomly. The interplay between randomness and memory underlying these
sequences leads to a wide variety of behaviors ranging from stretched
exponential to log-normal to algebraic growth. Interestingly, the set of all
possible sequence values has an intricate structure.Comment: 4 pages, 4 figure
Quenched Averages for self-avoiding walks and polygons on deterministic fractals
We study rooted self avoiding polygons and self avoiding walks on
deterministic fractal lattices of finite ramification index. Different sites on
such lattices are not equivalent, and the number of rooted open walks W_n(S),
and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We
use exact recursion equations on the fractal to determine the generating
functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These
are used to compute the averages and over different positions of S. We find that the connectivity constant
, and the radius of gyration exponent are the same for the annealed
and quenched averages. However, , and , where the exponents
and take values different from the annealed case. These
are expressed as the Lyapunov exponents of random product of finite-dimensional
matrices. For the 3-simplex lattice, our numerical estimation gives ; and , to be
compared with the annealed values and .Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic
Ray splitting in paraxial optical cavities
We present a numerical investigation of the ray dynamics in a paraxial
optical cavity when a ray splitting mechanism is present. The cavity is a
conventional two-mirror stable resonator and the ray splitting is achieved by
inserting an optical beam splitter perpendicular to the cavity axis. We show
that depending on the position of the beam splitter the optical resonator can
become unstable and the ray dynamics displays a positive Lyapunov exponent.Comment: 13 pages, 7 figures, 1 tabl
Exact Lyapunov Exponent for Infinite Products of Random Matrices
In this work, we give a rigorous explicit formula for the Lyapunov exponent
for some binary infinite products of random real matrices. All
these products are constructed using only two types of matrices, and ,
which are chosen according to a stochastic process. The matrix is singular,
namely its determinant is zero. This formula is derived by using a particular
decomposition for the matrix , which allows us to write the Lyapunov
exponent as a sum of convergent series. Finally, we show with an example that
the Lyapunov exponent is a discontinuous function of the given parameter.Comment: 1 pages, CPT-93/P.2974,late
Multiplicities of Periodic Orbit Lengths for Non-Arithmetic Models
Multiplicities of periodic orbit lengths for non-arithmetic Hecke triangle
groups are discussed. It is demonstrated both numerically and analytically that
at least for certain groups the mean multiplicity of periodic orbits with
exactly the same length increases exponentially with the length. The main
ingredient used is the construction of joint distribution of periodic orbits
when group matrices are transformed by field isomorphisms. The method can be
generalized to other groups for which traces of group matrices are integers of
an algebraic field of finite degree
Spectral statistics for quantized skew translations on the torus
We study the spectral statistics for quantized skew translations on the
torus, which are ergodic but not mixing for irrational parameters. It is shown
explicitly that in this case the level--spacing distribution and other common
spectral statistics, like the number variance, do not exist in the
semiclassical limit.Comment: 7 pages. One figure, include
Heat conduction in the disordered harmonic chain revisited
A general formulation is developed to study heat conduction in disordered
harmonic chains with arbitrary heat baths that satisfy the
fluctuation-dissipation theorem. A simple formal expression for the heat
current J is obtained, from which its asymptotic system-size (N) dependence is
extracted. It is shown that the ``thermal conductivity'' depends not just on
the system itself but also on the spectral properties of the fluctuation and
noise used to model the heat baths. As special cases of our heat baths we
recover earlier results which reported that for fixed boundaries , while for free boundaries . For other choices we
find that one can get other power laws including the ``Fourier behaviour'' .Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let
- …
