28 research outputs found

    Increased ParB level affects expression of stress response, adaptation and virulence operons and potentiates repression of promoters adjacent to the high affinity binding sites parS3 and parS4 in Pseudomonas aeruginosa

    Get PDF
    Similarly to its homologs in other bacteria, Pseudomonas aeruginosa partitioning protein ParB facilitates segregation of newly replicated chromosomes. Lack of ParB is not lethal but results in increased frequency of anucleate cells production, longer division time, cell elongation, altered colony morphology and defective swarming and swimming motility. Unlike in other bacteria, inactivation of parB leads to major changes of the transcriptome, suggesting that, directly or indirectly, ParB plays a role in regulation of gene expression in this organism. ParB overproduction affects growth rate, cell division and motility in a similar way as ParB deficiency. To identify primary ParB targets, here we analysed the impact of a slight increase in ParB level on P. aeruginosa transcriptome. ParB excess, which does not cause changes in growth rate and chromosome segregation, significantly alters the expression of 176 loci. Most notably, the mRNA level of genes adjacent to high affinity ParB binding sites parS1-4 close to oriC is reduced. Conversely, in cells lacking either parB or functional parS sequences the orfs adjacent to parS3 and parS4 are upregulated, indicating that direct ParB- parS3/ parS4 interactions repress the transcription in this region. In addition, increased ParB level brings about repression or activation of numerous genes including several transcriptional regulators involved in SOS response, virulence and adaptation. Overall, our data support the role of partitioning protein ParB as a transcriptional regulator in Pseudomonas aeruginosa

    Transcriptional profiling of ParA and ParB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa.

    Get PDF
    Accurate chromosome segregation to progeny cells is a fundamental process ensuring proper inheritance of genetic material. In bacteria with simple cell cycle, chromosome segregation follows replication initiation since duplicated oriC domains start segregating to opposite halves of the cell soon after they are made. ParA and ParB proteins together with specific DNA sequences are parts of the segregation machinery. ParA and ParB proteins in Pseudomonas aeruginosa are important for optimal growth, nucleoid segregation, cell division and motility. Comparative transcriptome analysis of parA null and parB null mutants versus parental P. aeruginosa PAO1161 strain demonstrated global changes in gene expression pattern in logarithmically growing planktonic cultures. The set of genes similarly affected in both mutant strains is designated Par regulon and comprises 536 genes. The Par regulon includes genes controlled by two sigma factors (RpoN and PvdS) as well as known and putative transcriptional regulators. In the absence of Par proteins, a large number of genes from RpoS regulon is induced, reflecting the need for slowing down the cell growth rate and decelerating the metabolic processes. Changes in the expression profiles of genes involved in c-di-GMP turnover point out the role of this effector in such signal transmission. Microarray data for chosen genes were confirmed by RT-qPCR analysis. The promoter regions of selected genes were cloned upstream of the promoter-less lacZ gene and analyzed in the heterologous host E. coliΔlac. Regulation by ParA and ParB of P. aeruginosa was confirmed for some of the tested promoters. Our data demonstrate that ParA and ParB besides their role in accurate chromosome segregation may act as modulators of genes expression. Directly or indirectly, Par proteins are part of the wider regulatory network in P. aeruginosa linking the process of chromosome segregation with the cell growth, division and motility

    Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene

    Get PDF
    The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs

    The Potential of Physical Exercise to Mitigate Radiation Damage—A Systematic Review

    Get PDF
    There is a need to investigate new countermeasures against the detrimental effects of ionizing radiation as deep space exploration missions are on the horizon.Objective: In this systematic review, the effects of physical exercise upon ionizing radiation-induced damage were evaluated.Methods: Systematic searches were performed in Medline, Embase, Cochrane library, and the databases from space agencies. Of 2,798 publications that were screened, 22 studies contained relevant data that were further extracted and analyzed. Risk of bias of included studies was assessed. Due to the high level of heterogeneity, meta-analysis was not performed. Five outcome groups were assessed by calculating Hedges' g effect sizes and visualized using effect size plots.Results: Exercise decreased radiation-induced DNA damage, oxidative stress, and inflammation, while increasing antioxidant activity. Although the results were highly heterogeneous, there was evidence for a beneficial effect of exercise in cellular, clinical, and functional outcomes.Conclusions: Out of 72 outcomes, 68 showed a beneficial effect of physical training when exposed to ionizing radiation. As the first study to investigate a potential protective mechanism of physical exercise against radiation effects in a systematic review, the current findings may help inform medical capabilities of human spaceflight and may also be relevant for terrestrial clinical care such as radiation oncology.</jats:p

    Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/ Cxcr7 axis

    Get PDF
    The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor ¡1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras- Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle

    The Potential of Fasting and Caloric Restriction to Mitigate Radiation Damage—A Systematic Review

    Get PDF
    Detrimental health effects from ionizing radiation to the living being is one of the key concerns identified and addressed by Radiation Protection institutions, nationally and internationally on Earth and for human spaceflight. Thus, new methods for mitigating the adverse effects of ionizing radiation are urgently needed for terrestrial health and deep space exploration. Caloric restriction and (intermittent-) fasting have been reported to elicit a variety of immediate and long-term physiological effects. The rapidly growing body of evidence of research studies investigating the effects of caloric restriction and dietary fasting points towards a multitude of health benefits affecting numerous physiological systems. Therefore, a systematic literature review was performed to evaluate the evidence of caloric restriction and dietary fasting on the physiological response to ionising radiation in humans and animals. All experimental studies in humans, animals and eukaryotic cell lines available in PubMed, Cochrane library and specialised databases were searched comparing irradiation post-caloric restriction or fasting to a non-nutritionally restricted control group on a broad range of outcomes from molecular to clinical responses. The initial search yielded 2653 records. The final analysis included 11 studies. Most studies investigated the survival rate or cancer occurrence in animals. Included studies did not reveal any benefit from pre exposure caloric restriction, except when performed with post radiation caloric restriction. However, the effects of pre-exposure fasting suggest increased resilience to ionizing radiation

    Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7

    Get PDF
    The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be executed by modulating the expression of positive cell cycle regulators, such as cyclin E

    Study on Phylogenetic Relationships, Variability, and Correlated Mutations in M2 Proteins of Influenza Virus A

    Get PDF
    M2 channel, an influenza virus transmembrane protein, serves as an important target for antiviral drug design. There are still discordances concerning the role of some residues involved in proton transfer as well as the mechanism of inhibition by commercial drugs. The viral M2 proteins show high conservativity; about 3/4 of the positions are occupied by one residue in over 95%. Nine M2 proteins from the H3N2 strain and possibly two proteins from H2N2 strains make a phylogenic cluster closely related to 2RLF. The variability range is limited to 4 residues/position with one exception. The 2RLF protein stands out by the presence of 2 serines at the positions 19 and 50, which are in most other M2 proteins occupied by cysteines. The study of correlated mutations shows that there are several positions with significant mutational correlation that have not been described so far as functionally important. That there are 5 more residues potentially involved in the M2 mechanism of action. The original software used in this work (Consensus Constructor, SSSSg, Corm, Talana) is freely accessible as stand-alone offline applications upon request to the authors. The other software used in this work is freely available online for noncommercial purposes at public services on bioinformatics such as ExPASy or NCBI. The study on mutational variability, evolutionary relationship, and correlated mutation presented in this paper is a potential way to explain more completely the role of significant factors in proton channel action and to clarify the inhibition mechanism by specific drugs

    Carbon-13 in alpha-cellulose of oak latewood (Jędrzejów, Southern Poland) during the Maunder Minimum

    No full text
    We have studied the δ13C signature in latewood alpha-cellulose of an ancient oak (Quercus robur L.) from a Cisterian Abbey belfry in Jędrzejów (Southern Poland). The time scale for the delta 13C record during 1631-1765 AD was built on the basis of detailed dendrochronology studies. Techniques available for extraction of alpha-cellulose from small samples have been used, the mean value of alpha-cellulose extraction efficiency being ca. 35%. In the delta 13C record of alpha-cellulose the cooling between 1650-1700 AD is clearly visible as a decrease of about 1.5‰. This period is consistent with the interval of the lowest solaractivity between 1645 and 1715 AD, which is known as the Maunder Minimum. Anti-correlation between δ13C and δ13C during the Maunder Minimum was observed but δ13C record is delayed by about 30 years with respect to the Maunder Minimum
    corecore