518 research outputs found

    Rationally Isomorphic Hermitian Forms and Torsors of Some Non-Reductive Groups

    Full text link
    Let RR be a semilocal Dedekind domain. Under certain assumptions, we show that two (not necessarily unimodular) hermitian forms over an RR-algebra with involution, which are rationally ismorphic and have isomorphic semisimple coradicals, are in fact isomorphic. The same result is also obtained for quadratic forms equipped with an action of a finite group. The results have cohomological restatements that resemble the Grothendieck--Serre conjecture, except the group schemes involved are not reductive. We show that these group schemes are closely related to group schemes arising in Bruhat--Tits theory.Comment: 27 pages. Changes from previous version: Section 5 was split into two sections, several proofs have been simplified, other mild modification

    Signatures of hermitian forms and the Knebusch Trace Formula

    Full text link
    Signatures of quadratic forms have been generalized to hermitian forms over algebras with involution. In the literature this is done via Morita theory, which causes sign ambiguities in certain cases. In this paper, a hermitian version of the Knebusch Trace Formula is established and used as a main tool to resolve these ambiguities. The last page is an erratum for the published version. We inadvertently (I) gave an incorrect definition of adjoint involutions; (II) omitted dealing with the case (H×H,m^ )(H\times H, \widehat{\phantom{m}}\,). As W(H×H,m^ )=W(R×R,m^ )=0W(H\times H, \widehat{\phantom{m}}\,)= W(R\times R, \widehat{\phantom{m}}\,)=0, the omission does not affect our reasoning or our results. For the sake of completeness we point out where some small changes should be made in the published version.Comment: This is the final version before publication. The last page is an updated erratum for the published versio

    Division, adjoints, and dualities of bilinear maps

    Full text link
    The distributive property can be studied through bilinear maps and various morphisms between these maps. The adjoint-morphisms between bilinear maps establish a complete abelian category with projectives and admits a duality. Thus the adjoint category is not a module category but nevertheless it is suitably familiar. The universal properties have geometric perspectives. For example, products are orthogonal sums. The bilinear division maps are the simple bimaps with respect to nondegenerate adjoint-morphisms. That formalizes the understanding that the atoms of linear geometries are algebraic objects with no zero-divisors. Adjoint-isomorphism coincides with principal isotopism; hence, nonassociative division rings can be studied within this framework. This also corrects an error in an earlier pre-print; see Remark 2.11

    Pfister involutions

    Get PDF
    The question of the existence of an analogue, in the framework of central simple algebras with involution, of the notion of Pfister form is raised. In particular, algebras with orthogonal involution which split as a tensor product of quaternion algebras with involution are studied. It is proven that, up to degree 16, over any extension over which the algebra splits, the involution is adjoint to a Pfister form. Moreover, cohomological invariants of those algebras with involution are discusse

    Algebraic lattice constellations: bounds on performance

    Get PDF
    In this work, we give a bound on performance of any full-diversity lattice constellation constructed from algebraic number fields. We show that most of the already available constructions are almost optimal in the sense that any further improvement of the minimum product distance would lead to a negligible coding gain. Furthermore, we discuss constructions, minimum product distance, and bounds for full-diversity complex rotated Z[i]/sup n/-lattices for any dimension n, which avoid the need of component interleaving

    On the Grothendieck-Serre Conjecture for Classical Groups

    Full text link
    We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue maps; the complex is shown to be exact when the ring is of dimension ≤2\le 2 (or ≤4\le 4, with additional hypotheses on the algebra with involution). Note that we do not assume that the ring contains a field.Comment: 37 pages. Changes from previous version include many improvements to section 2. Comments are welcom

    An Improved Model for Relativistic Solar Proton Acceleration applied to the 2005 January 20 and Earlier Events

    Full text link
    This paper presents results on modelling the ground level response of the higher energy protons for the 2005 January 20 ground level enhancement (GLE). This event, known as GLE 69, produced the highest intensity of relativistic solar particles since the famous event on 1956 February 23. The location of recent X-ray and gamma-ray emission (N14 W61) was near to Sun-Earth connecting magnetic field lines, thus providing the opportunity to directly observe the acceleration source from Earth. We restrict our analysis to protons of energy greater than 450 MeV to avoid complications arising from transport processes that can affect the propagation of low energy protons. In light of this revised approach we have reinvestigated two previous GLEs: those of 2000 July 14 (GLE 59) and 2001 April 15 (GLE 60). Within the limitations of the spectral forms employed, we find that from the peak (06:55 UT) to the decline (07:30 UT) phases of GLE 69, neutron monitor observations from 450 MeV to 10 GeV are best fitted by the Gallegos-Cruz & Perez-Peraza stochastic acceleration model. In contrast, the Ellison & Ramaty spectra did not fit the neutron monitor observations as well. This result suggests that for GLE 69, a stochastic process cannot be discounted as a mechanism for relativistic particle acceleration, particularly during the initial stages of this solar event. For GLE 59 we find evidence that more than one acceleration mechanism was present, consistent with both shock and stochastic acceleration processes dominating at different times of the event. For GLE 60 we find that Ellison & Ramaty spectra better represent the neutron monitor observations compared to stochastic acceleration spectra. The results for GLEs 59 and 60 are in agreement with our previous work.Comment: 42 pages, 10 figures, 10 tables, published in ApJ, August 200
    • …
    corecore