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Abstract. The question of the existence of an analogue, in the framework of central
simple algebras with involution, of the notion of Pfister form is raised. In particular, alge-
bras with orthogonal involution which split as a tensor product of quaternion algebras
with involution are studied. It is proven that, up to degree 16, over any extension over
which the algebra splits, the involution is adjoint to a Pfister form. Moreover, cohomo-
logical invariants of those algebras with involution are discussed.
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0. Introduction

An involution on a central simple algebra is nothing but a twisted form of a symmetric
or alternating bilinear form up to a scalar factor ([KMRT98], ch. 1). Hence the theory of
central simple algebras with involution naturally appears as an extension of the theory of
quadratic forms, which is an important source of inspiration for this subject.

We do not have, for algebras with involution, such a nice algebraic theory as for
quadratic forms, since orthogonal sums are not always defined, and are not unique when
defined [Dej95]. Nevertheless, in view of the fundamental role played by Pfister forms in
the theory of quadratic forms, and also of the nice properties they share, it seems natu-
ral to try and find out whether an analogous notion exists in the setting of algebras with
involution.

The main purpose of this paper is to raise this question, which was originally posed
by David Tao [Tao]; this is done in §2. In particular, this leads to the consideration of
algebras with orthogonal involution which split as a tensor product of r quaternion algebras
with involution. One central question is then the following: consider such a product of
quaternions with involution, and assume the algebra is split. Is the corresponding involution
adjoint to a Pfister form? The answer is positive up to r = 5. A survey of this question is
given in §2.4. In §4, we give a direct proof of this fact for r = 4. Before that, we study
in §3, the existence of cohomological invariants for some of the algebras with involution
which can naturally be considered as generalisations of Pfister quadratic forms.
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1. Notations

Throughout this paper, the base field F is supposed to be of characteristic different from
2, and K denotes a field extension of F . We refer the reader to [Sch85], [Lam73] and
[KMRT98] for more details on what follows in this section.

1.1 Cohomology

Let K

s

be a separable closure of the field K , and let us denote by 0

K

the absolute Galois
group 0

K

= Gal(K
s

/K). The Galois cohomology groups of 0

K

with coefficients in Z/2
will be denoted by H

i

(K) = H

i

(0

K

, Z/2). For any a ∈ K

?, we denote by (a) the image in
H

1
(K) of the class of a in K

?

/K

?2 under the canonical isomorphism K

?

/K

?2
' H

1
(K),

and by (a1, . . . , ai

) ∈ H

i

(K) the cup-product (a1) ∪ (a2) ∪ · · · ∪ (a

i

). In particular,
the element (a1, a2) ∈ H

2
(K) corresponds, under the canonical isomorphism H

2
(K) '

Br2(K), where Br2(K) denotes the 2-torsion part of the Brauer group of K , to the Brauer
class of the quaternion algebra (a1, a2)K .

Consider now a smooth integral variety X over F , and denote by F(X) its function field.
An element α ∈ H

i

(F (X)) is said to be unramified if for each codimension one point
x in X, with local ring O

x

and residue field κ

x

, the element α belongs to the image of
the natural map H

i

et

(O

x

, Z/2) → H

i

(F (X)), or equivalently its image under the residue
map ∂

x

: H

i

(F (X)) → H

i−1
(κ

x

) is zero (see [CT95], Theorem 4.1.1). We denote by
H

i

nr

(F (X)/F ) the subgroup of H

i

(F (X)) of unramified elements.

1.2 Quadratic forms

The quadratic forms considered in this paper are non-degenerate. If q is a quadratic form
over K , we let K(q) be the function field of the corresponding projective quadric. The
field K(q) is the generic field over which an anisotropic form q acquires a non-trivial
zero.

Consider a diagonalisation 〈a1, . . . , an

〉 of a quadratic form q. We denote by d(q)

the signed discriminant of q, that is d(q) = (−1)

n(n−1)

2
a1 . . . a

n

∈ K

?

/K

?2, and by
C(q) its Clifford algebra (see [Sch85] or [Lam73] for a definition and structure theo-
rems). We recall that C(q) is a Z/2-graded algebra, and we denote by C0(q) its even
part.

For any a1, . . . , ar

∈ K

? we denote by 〈〈a1, . . . , ar

〉〉 the r-fold Pfister form
⊗

r

i=1〈1, −a

i

〉. We let P

r

(K) be the set of r-fold Pfister forms over K , and GP

r

(K) be the
set of quadratic forms over K which are similar to an r-fold Pfister form. Pfister forms
are also characterized, up to similarities, by the following property:

Theorem 1.1(([Kne76], Theorem 5.8) and [Wad72]). Let q be a quadratic form over F .
The following assertions are equivalent:

(i) The dimension of q is a power of 2, and q

F(q)

is hyperbolic;
(ii) The quadratic form q is similar to a Pfister form.
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From the above theorem, one easily deduces:

COROLLARY 1.2

Let q be a quadratic form over F . The following assertions are equivalent:

(i) The dimension of q is a power of 2 and for any field extension K/F , if q

K

is isotropic,
then it is hyperbolic;

(ii) q is similar to a Pfister form.

We denote by e

r

the map P

r

(K) → H

r

(K) defined by Arason [Ara75] as e

r

(〈〈a1, . . . ,

a

r

〉〉) = (a1, . . . , ar

).
Let W(K) be the Witt ring of the field K , and denote by I (K) the fundamental ideal of

W(K), which consists of classes of even-dimensional quadratic forms. Its rth power I

r

(K)

is additively generated by r-fold Pfister forms. For r = 1, 2 and 3, the invariant e

r

extends
to a surjective homomorphism I

r

(K) → H

r

(K) with kernel I

r+1
(K) (see [Mer81] for

r = 2 and [MS90] for r = 3). It follows from this that the class of an even-dimensional
quadratic form q belongs to I

2
(K) (resp. I 3

(K)) if and only if e1(q) = 0 (resp. e1(q) = 0,

e2(q) = 0). If we assume moreover that q is of dimension 4 (resp. 8), this is equivalent to
saying that q is similar to a Pfister form.

Moreover, the maps e1 and e2 are actually defined (as maps) over the whole Witt ring
W(K), and can be explicitly described in terms of classical invariants of quadratic forms.
Indeed, e1 associates to the class of a quadratic form q its signed discriminant d(q) ∈

K

?

/K

?2. Moreover, the image under e2 of the class of the same form q is the Brauer class
of its Clifford algebra C(q) if the dimension of q is even, and the Brauer class of C0(q) if
the dimension of q is odd.

1.3 Algebras with involution

An involution τ on a central simple algebra B over K is an anti-automorphism of order 2
of the ring B. We only consider here involutions of the first kind, that is K-linear ones. For
any field extension L/K , we denote by B

L

the L-algebra B ⊗

K

L, by τ

L

the involution
τ ⊗ Id of B

L

and by (B, τ)

L

the pair (B

L

, τ

L

).
Consider now a splitting field L of B, that is an extension L/K such that B

L

is the endo-
morphism algebra of some L-vector space V . The involution τ

L

is the adjoint involution
ad

b

with respect to some bilinear form b : V × V → L, which is either symmetric or
skew-symmetric. The type of the form b does not depend on the choice of the splitting field
L; the involution τ is said to be of orthogonal type if b is symmetric, and of symplectic
type if it is skew-symmetric.

Let Q be a quaternion algebra over K . It admits a unique involution of symplectic type,
which we call the canonical involution of Q, and which is defined by γ

Q

(x) = Trd
Q

(x)−x,
where Trd

Q

is the reduced trace on Q. We denote by Q

0 the subspace of pure quaternions,
that is those q ∈ Q satisfying Trd

Q

(q) = 0, or equivalently, γ

Q

(q) = −q. For any pure
quaternion q ∈ Q

0, we have q

2
∈ F . For any orthogonal involution σ on Q, there exists a

pure quaternion q ∈ Q such that σ = Int(q)◦γ

Q

, where Int(q) is the inner automorphism
associated to q, defined by Int(q)(x) = qxq

−1.
If the degree of B is even, and if τ is of orthogonal type, we denote by d(τ) ∈ K

?

/K

?2

the discriminant of τ , and by C(B, τ) its Clifford algebra ([KMRT98], §7, 8). In the
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split orthogonal case (B, τ) = (End
F

(V ), ad
q

), they correspond respectively to the dis-
criminant of q and its even Clifford algebra C0(q). Note that by the structure theo-
rem ([KMRT98], (8.10)), if the discriminant of τ is trivial, then the Clifford algebra C(B, τ)

is a direct product of two K-central simple algebras, C(B, τ) = C

+

× C

−

.
A right ideal I of a central simple algebra with involution (B, τ) is called isotropic if

σ(I)I = {0}. The algebra with involution (B, τ) is called isotropic if it contains a non
trivial isotropic right ideal, and hyperbolic if it contains a non trivial isotropic right ideal
of maximal dimension (that is of reduced dimension 1

2 deg(B)) ([KMRT98], § 6).
In [Tao94], David Tao associates to an algebra with orthogonal involution (B, τ) a

variety which, in the split orthogonal case (B, τ) = (End
K

(V ), ad
q

), is the projective
quadric associated to q. This variety is called the involution variety of (B, τ); its function
field is the generic field over which B splits and τ becomes isotropic.

2. Three classes of algebras with involution

From now on, we consider a central simple algebra A over F , endowed with an involution
σ of orthogonal type. We denote by F

A

the function field of the Severi–Brauer variety of
A, which is known to be a generic splitting field for A. After scalar extension to F

A

, the
involution σ becomes the adjoint involution with respect to some quadratic form over F

A

,
which we denote by q

σ

. Note that this form is uniquely defined up to a scalar factor in F

?

A

.
In view of the definition and properties of Pfister forms, it seems natural, for our purpose,

to consider the three classes of algebras with involution introduced in this section.

2.1 Pfister involutions

DEFINITION 2.1

The algebra with orthogonal involution (A, σ ) is called a Pfister algebra with involution
if σ

F

A

is adjoint to a Pfister form.

Remark 2.2.

(i) If (A, σ ) is a Pfister algebra with involution, the degree of A is a power of 2.
(ii) Since the form q

σ

is uniquely defined up to a scalar factor, (A, σ ) is a Pfister algebra
with involution if and only if q

σ

∈ GP(F

A

). Moreover, two similar Pfister forms
are actually isometric (as follows from ([Sch85], ch. 4, 1.5). Hence, in this particular
case, there is a canonical choice for the quadratic form q

σ

; we may assume it is a
Pfister form, in which case it is uniquely defined up to isomorphism.

(iii) Since any 2-dimensional quadratic form is similar to a Pfister form, any degree 2
algebra with orthogonal involution is a Pfister algebra with involution.

The field F

A

is a generic splitting field for A. Hence, we may deduce from the definition
and from Corollary 1.2 the following proposition:

PROPOSITION 2.3

The following assertions are equivalent:

(i) (A, σ ) is a Pfister algebra with involution;
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(ii) For any field extension K/F which splits A, the involution σ

K

is adjoint to a Pfister
form;

(iii) The degree of A is a power of 2 and for any field extension K/F which splits A, if
σ

K

is isotropic, then it is hyperbolic;
(iv) The degree of A is a power of 2 and after extending scalars to the function field of

its involution variety, (A, σ ) becomes hyperbolic.

2.2 Involutions of type I ⇒ H

As recalled in §1, ‘isotropy implies hyperbolicity’ is a characterization of Pfister forms.
Hence, we may also consider algebras with involution satisfying the same property:

DEFINITION 2.4

The algebra with orthogonal involution (A, σ ) is said to be of type I ⇒ H if the degree
of A is a power of 2 and for any field extension K/F , if (A, σ )

K

is isotropic, then it is
hyperbolic.

Remark 2.5.

(i) Again the condition is empty in degree 2. Any degree 2 algebra with orthogonal
involution is of type I ⇒ H .

(ii) From the previous proposition, one deduces that any involution of type I ⇒ H is a
Pfister involution. Moreover, if A is split, then the two definitions are equivalent.

2.3 Product of quaternions with involution

Up to similarities, Pfister forms are those quadratic forms which diagonalise as a tensor
product of two dimensional forms. Hence, we now consider algebras with involution which
split as a tensor product of degree 2 algebras with involution.

DEFINITION 2.6

The algebra with orthogonal involution (A, σ ) is called a product of quaternions with
involution if there exists an integer r and quaternion algebras with involution (Q

i

, σ

i

) for
i = 1, . . . , r such that (A, σ ) ' ⊗

r

i=1(Qi

, σ

i

).

Remark 2.7.

(i) If (A, σ ) is a product of quaternions with involution, then the degree of A is a power
of 2.

(ii) Since σ is of orthogonal type, the number of indices i for which σ

i

is of symplectic
type is necessarily even.

(iii) In [KPS91], it is proven that a tensor product of two quaternion algebras with orthog-
onal involutions admits a decomposition as a tensor product of quaternion algebras
with symplectic (hence canonical) involutions. Hence, any product of quaternions
with involution admits a decomposition as above in which all the σ

i

if r is even, and
all but one if r is odd, are the canonical involutions of Q

i

.
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As above, the condition is empty in degree 2, any degree 2 algebra with orthogonal
involution is a product of quaternions with involution. In degrees 4 and 8, we have the
following characterizations:

Theorem 2.8[KPS91]. Let (A, σ ) be a degree 4 algebra with orthogonal involution. It is
a product of quaternions with involution if and only if the discriminant of σ is 1.

Theorem 2.9([KMRT98], (42.11)). Let (A, σ ) be a degree 8 algebra with orthogonal
involution. It is a product of quaternions with involution if and only if the discriminant of
σ is trivial and one component of the Clifford algebra of (A, σ ) splits.

2.4 Shapiro’s conjecture

It seems a natural question to try and find out whether the three classes of algebras with
involution introduced above are equivalent. This is obviously the case in degree 2. The
following proposition will be proven in §3.3:

PROPOSITION 2.10

Let (A, σ ) be an algebra of degree at most 8 with orthogonal involution. The following
are equivalent:

(i) (A, σ ) is a Pfister algebra with involution;
(ii) (A, σ ) is a product of quaternions with involution;

(iii) (A, σ ) is of type I ⇒ H .

Nevertheless, the general question of the equivalence of these three classes of algebras
with involution is largely open in higher degree. The most significant result is due to
Shapiro. In his book ‘Composition of quadratic forms’ he makes the following conjecture:

Conjecture 2.11 ([Sha00], (9.17)). Let (A, σ ) be a product of r quaternions with involu-
tion. If A is split, then (A, σ ) admits a decomposition as a tensor product of r quaternion
algebras with involution in which each quaternion algebra is split.

Moreover, he proves the following theorem:

Theorem 2.12 ([Sha00], Claim in p. 166 and Ch. 9). Conjecture 2.11 is true if r ≤ 5.

It is easy to see that Shapiro’s conjecture is true for some r if and only if any product
of r quaternions with involution is a Pfister algebra with involution. Hence the previous
theorem implies.

COROLLARY 2.13

Any product of r ≤ 5 quaternions with involution is a Pfister algebra with involution.

Shapiro does not give a direct proof of this conjecture. He is actually interested in another
conjecture, which he calls the Pfister factor conjecture, and which gives a characterization
of r-fold Pfister forms in terms of the existence of vector-spaces of maximal dimension
in the group of similarities of these forms (see [Sha00], (2.17)) for a precise statement).
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He proves the Pfister factor conjecture for r ≤ 5, using tools from the algebraic theory of
quadratic forms, and also proves it is equivalent to Conjecture 2.11.

In fact, for r ≤ 3, we have a little bit more: as already mentioned in Proposition 2.10,
(A, σ ) is a product of quaternions with involution if and only if it is a Pfister algebra with
involution. A proof of this fact, using cohomological invariants, which was already noticed
by David Tao, will be given in §3, where we study the general question of cohomological
invariants of Pfister involutions.

In §4, we give a direct proof of 2.11 in the r = 4 case, based on the study of some
trace forms of product of quaternions with involution. Since this paper was submitted,
Serhir and Tignol [ST] found another direct proof of this conjecture for r ≤ 5, using the
discriminant of symplectic involutions defined by Berhuy, Monsurro and Tignol [BMT].

3. Cohomological invariants

From the point of view of quadratic form theory, cohomological invariants seem a natural
tool for studying these questions. In § 3.1, we define an invariant of a Pfister involution, with
values in the unramified cohomology group of the function field of the generic splitting
field of the underlying algebra. We then study the question of the existence of an analogous
invariant with values in the cohomology group of the base field.

3.1 Invariant e

i

for Pfister algebras with involution

Throughout this section, (A, σ ) is a Pfister algebra with involution over F . The degree
of A is 2i , and we assume q

σ

is an i-fold Pfister form over F

A

(see Remark 2.2). Let us
consider the Arason invariant e

i

(q

σ

) ∈ H

i

(F

A

). We have the following:

Theorem 3.1. The invariant e

i

(q

σ

) belongs to the unramified cohomology group
H

i

nr

(F

A

/F).

Proof. Given a codimension one point x of the Severi–Brauer variety X

A

of A, its residue
field κ

x

splits A. Hence, the involution σ

κ

x

is the adjoint involution with respect to a
quadratic form q

x

which is a Pfister form uniquely determined by σ

κ

x

(see Remark 2.2 (ii)).

Let us now consider the completions ̂

O

x

and ̂

F(X

A

) of O

x

and F(X

A

) at the discrete

valuation associated to x. Since ̂

O

x

is complete, the field ̂

F(X

A

) is isomorphic to κ

x

((t)),
and for the same reason as above, the involution σ

̂

F(X

A

)

is adjoint to a unique Pfister form
q

̂

F(X

A

)

, which is the form q

x

extended to κ

x

((t)).

From this, we get that e
i

(q

̂

F(X

A

)

) is the image of e

i

(q

x

) under the natural map H

i

(κ

x

) →

H

i

(κ

x

((t))). By ([CT95], §3.3), since the corresponding ring is complete, this implies that

the image of e

i

(q

̂

F(X

A

)

) under the residue map ∂

x

: H

i

(

̂

F(X

A

)) → H

i−1
(κ

x

) is trivial.
Finally, again by ([CT95], §3.3), ∂

x

(e

i

(q

σ

)) = ∂

x

(e

i

(q

̂

F(X

A

)

)), and this proves the theorem.

�

Of course, it would be nicer to have an invariant with values in the cohomology group
of the base field. To be more precise, let us denote by E

i

(A) the kernel of the restriction
map H

i

(F ) → H

i

(F

A

) and by 8 the injection:

8 : H

i

(F )/E

i

(A) → H

i

nr

(F

A

).
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We may ask the following question: Does e

i

(q

σ

) belong to the image of 8? In §3.2,
we prove that this is the case for i = 0, 1 and 2, and we give an interpretation of the
corresponding invariant in H

i

(F )/E

i

(A) in terms of classical invariants of orthogonal
involutions. In §3.4, we prove this is not the case anymore for i = 3.

3.2 Invariants e0, e1 and e2

Let us consider now any algebra with orthogonal involution (A, σ ). As recalled in §1,
the first three Arason invariants e0, e1 and e2 for quadratic forms play a particular role.
Indeed, they are actually defined as maps over the whole Witt ring W(F), and they can be
described in terms of classical invariants of quadratic forms. In view of this, we may give
the following definition:

DEFINITION 3.2

Let (A, σ ) be an algebra with orthogonal involution over F . We let

e0(A, σ ) = deg(A) ∈ Z/2Z ' H

0
(F ).

If the degree of A is even (that is e0(A, σ ) = 0), we let

e1(A, σ ) = d(σ ) ∈ F

?

/F

?2
= H

1
(F ),

where d(σ ) denotes the discriminant of σ .

Remark 3.3. Note that, as opposed to what happens for quadratic forms, the invariant e1 is
only defined when e0 is trivial. This is a consequence of the fact that the discriminant of a
quadratic form is an invariant up to similarity, and hence an invariant of the corresponding
adjoint involution, only if the form has even dimension.

Assume now that e0(A, σ ) = e1(A, σ ) = 0, which means (A, σ ) has even degree
and trivial discriminant. From the structure theorem recalled in §1, the Clifford algebra
C(A, σ) is isomorphic to a direct product of two central simple algebras over F , C(A, σ) =

C

+

× C

−

, which give rise to two Brauer classes [C
+

] and [C
−

] in Br2(F ). The definition
of e2 then relies on the following proposition:

PROPOSITION 3.4  ([KMRT98], (9.12))

In Br2(F ), we have [C
+

] + [C
−

] ∈ {0, [A]}.

Indeed this implies that the two classes actually coincide in the quotient of Br2(F ) by
the subgroup {0, [A]}, which is exactly E2(A). Hence, we give the following definition:

DEFINITION 3.5

Let (A, σ ) be an algebra with orthogonal involution over F of even degree and trivial
discriminant. We let

e2(A, σ ) = [C
+

] = [C
−

] ∈ Br2(F )/E2(A).

Next, we prove the following:
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PROPOSITION 3.6

Let (A, σ ) be a split algebra with orthogonal involution, (A, σ ) = (End
F

(V ), ad
q

). When
they are defined, the invariants e0(A, σ ), e1(A, σ ) and e2(A, σ ) coincide respectively with
e0(q), e1(q) and e2(q).

Proof. This is clear for e0 and e1. For e2, first note that if A is split, then e2(A, σ ) actually
belongs to Br2(F ). Moreover, e2(A, σ ) is only defined when e0 and e1 are trivial, in which
case the form q is of even dimension and trivial discriminant. From the structure theorem
for Clifford algebra (see for instance ([Lam73], 5, §2) or ([Sch85], 9(2.10)) we get that in
this situation, we may represent C(q) as M2(B), for some central simple algebra B over
F , and the even part C0(q) corresponds to diagonal matrices, C0(q) ' B × B, so that
e2(q) = [C(q)] = [B] = e2(A, σ ). �

From this proposition, we easily deduce:

COROLLARY 3.7

Let (A, σ ) be an algebra with orthogonal involution such that e

i

(A, σ ) is defined for some
i ≤ 2. The invariant e

i

(A, σ ) maps to e

i

(q

σ

) under the morphism 8 : H

i

(F )/E

i

(A) →

H

i

(F

A

).

Hence, those invariants e

i

may be used to characterize degree 4 and 8 Pfister involutions.
Indeed, consider an algebra with orthogonal involution (A, σ ), of degree 2i for some
i ∈ {2, 3}. By definition, it is a Pfister algebra with involution if and only if the form q

σ

belongs to GP

i

(F

A

). As recalled in §1, this is also equivalent to saying that e1(qσ

) = 0 if
i = 2, and e1(qσ

) = e2(qσ

) = 0 if i = 3. From this we get the following:

PROPOSITION 3.8

The degree 4 algebra with orthogonal involution (A, σ ) is a Pfister algebra with involution
if and only if e1(A, σ ) = 0. The degree 8 algebra with orthogonal involution (A, σ ) is a
Pfister algebra with involution if and only if e1(A, σ ) = e2(A, σ ) = 0.

Using this, we are now able to prove Proposition 2.10.

3.3 Proof of Proposition 2.10

Comparing Proposition 3.8 with Theorems 2.8 and 2.9 we get the equivalence between (i)
and (ii), using ([KMRT98], (9.14)) in the degree 8 case. Moreover, as already noticed in
Remark 2.5, any involution of type I ⇒ H is a Pfister involution. Hence, it only remains
to prove that a product of r quaternions with involution with r ≤ 3 is of type I ⇒ H . Let
us consider such a product of quaternions with involution (A, σ ) and assume it is isotropic.
Then, A cannot be a division algebra and has index at most 2r−1.

If A is split, σ is the adjoint involution with respect to an isotropic Pfister form. Hence
it is hyperbolic, and this concludes the proof in that case.

Assume now that the index of A is 2r−1, and let D be a division algebra Brauer-equivalent
to A. We may represent (A, σ ) as (End

D

(M), ad
h

), where (M, h) is a rank 2 hermitian
module over D. Again, since σ is isotropic, h is isotropic, hence hyperbolic because of its
rank, and this concludes the proof in that case. If r = 2, we are done, and it only remains
to consider the case when r = 3 and A has index 2. Let Q be a quaternion division algebra
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Brauer-equivalent to A, denote by γ its canonical involution, and let (M, h) be a skew-
hermitian module over (Q, γ ) such that (A, σ ) = (End

Q

(M), ad
h

). Denote by C the conic
associated to Q, and by L its function field, which is known to be a generic splitting field
for Q, and hence for A. Since A

L

is split, σ

L

, and hence h

L

are hyperbolic. By ([PSS01],
Proposition 3.3) (see also [Dej01]), this implies that h itself, and hence σ is hyperbolic,
and the proof is complete.

3.4 About the e3 invariant

As opposed to what happens for e0, e1 and e2, there does not exist any invariant in
H

3
(F )/E3(A) which is a descent of e3(qσ

) for degree 8 Pfister algebras with involution,
as the following theorem shows:

Theorem 3.9. There exists a degree 8 Pfister algebra with involution for which the
invariant e3(qσ

) does not belong to the image of the morphism 8 : H

3
(F )/E3(A) →

H

3
nr

(F (X

A

)).

Proof. In his paper ‘Simple algebras and quadratic forms’, Merkurjev ([Mer92], proof
of Theorem 4) constructs a division algebra A, which is a product of three quaternion
algebras, A = Q1 ⊗ Q2 ⊗ Q3, and with centre a field F of cohomological dimension
at most 2. In particular, we have H

3
(F ) = 0. Consider any orthogonal decomposable

involution σ = σ1 ⊗ σ2 ⊗ σ3 on A. By Proposition 2.10, (A, σ ) is a degree 8 Pfister
algebra with involution. Moreover, by a result of Karpenko ([Kar00], Theorem 5.3), since
A is a division algebra, the involution σ remains anisotropic over F(X

A

). Hence, q

σ

is an
anisotropic 3-fold Pfister form, and e3(qσ

) is non-trivial. Since H

3
(F ) = 0, this is enough

to prove that e3(qσ

) does not belong to the image of 8. �

Remark 3.10. Using Merkurjev’s construction of division product of quaternions with
involution mentioned in the proof of Theorem 3.9, one may construct explicit elements in
the unramified cohomology H

i

nr

(F

A

/F) for any i ≥ 3 for which Shapiro’s conjecture is
known, which do not come from H

i

(F ).

4. Product of four quaternions with involution

In this section, we give a direct proof of Shapiro’s conjecture for r = 4, i.e. we prove that
any product of four quaternions with involution is a Pfister algebra with involution.

By Proposition 2.3 and Corollary 1.2, it suffices to prove the following proposition:

PROPOSITION 4.1

Let (A, σ ) be a product of four quaternions with involution. If A is split and σ is isotropic,
then it is adjoint to a hyperbolic quadratic form.

Let (A, σ ) = ⊗

4
i=1(Qi

, γ

i

), and assume A is split and σ is isotropic. By Remark 2.7
(ii), we may assume that each γ

i

is the canonical involution on Q

i

. Let us denote by
(D, γ ) = (Q1, γ1)⊗(Q2, γ2). We start with a lemma which gives a description of (A, σ ):

Lemma 4.2. There exists an invertible element u ∈ D

? satisfying γ (u) = u, Trd
D

(u) = 0
and Nrd

D

(u) ∈ F

?2 such that

(Q3, γ3) ⊗ (Q4, γ4) ' (D, Int(u−1
) ◦ γ )
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and

(A, σ ) ' (End
F

(D), ad
q

u

),

where q

u

is the quadratic form defined on D by q

u

(x) = Trd
D

(xuγ (x)).

Proof. Since A is split, Q3 ⊗ Q4 is isomorphic to D, and γ3 ⊗ γ4 corresponds under this
isomorphism to an orthogonal involution γ

′ on D. There exists an invertible γ -symmetric
element u ∈ D such that γ

′

= Int(u−1
) ◦ γ . Moreover, since γ3 ⊗ γ4 is decompos-

able, by Theorem 2.8, its discriminant is trivial. Hence, so is the discriminant of γ

′, and
by ([KMRT98], (7.3)(1)), we get that Nrd

D

(u) ∈ F

?2.
Using this, we now get that (A, σ ) is isomorphic to

(D ⊗ D, γ ⊗ Int(u−1
) ◦ γ ).

By ([KMRT98], (11.1)), under the canonical isomorphism D ⊗ D ' End
F

(D), the
involution γ ⊗ Int(u−1

) ◦ γ is adjoint to the quadratic form q

u

: D → F defined by
q

u

(x) = Trd
D

(xuγ (x)), and it only remains to prove that we may assume Trd
D

(u) = 0.
Since the isotropic involution σ is adjoint to q

u

, the quadratic form also is isotropic.
Moreover, by a general position argument, there exists an invertible element y ∈ D such
that q

u

(y) = Trd
D

(yuγ (y)) = 0. Then, the map D → D, x 7→ xy

−1 is an isometry
between q

u

and the quadratic form q

yuγ (y)

: x 7→ Trd
D

(xyuγ (y)γ (x)). One may eas-
ily check that this new element yuγ (y) satisfies all properties of the lemma, including
Trd

D

(yuγ (y)) = 0, and this ends the proof. �

To get Proposition 4.1, we now have to prove that the quadratic form q

u

is hyperbolic.
This follows easily from the following lemma:

Lemma 4.3. The quadratic space (D, q

u

) contains a totally isotropic subspace of dimen-
sion 5.

Indeed, by the computations of classical invariants for tensor product of algebras with
involution given in ([KMRT98], (7.3)(4) and p. 150), we have e0(A, σ ) = e1(A, σ ) =

e2(A, σ ) = 0. Hence, by Proposition 3.6, the quadratic form q

u

has trivial e0, e1 and e2
invariants, and as recalled in §1, this implies that it lies in I

3
(K).

Since q

u

is 16 dimensional, the previous lemma implies its anisotropic dimension is at
most 6. By Arason–Pfister’s theorem, this implies that q

u

is hyperbolic, and thus concludes
the proof of Proposition 4.1.

Proof of Lemma 4.3. For any z ∈ D

?, we denote by q

z

the quadratic form D = Q1 ⊗

Q2 → F , x 7→ Trd
D

(xzγ (x)). We first prove the following fact:

Claim 4.4. Let z ∈ D

? satisfy Trd
D

(z) = 0. We then have

(i) Q1 is totally isotropic for q

z

;
(ii) for all x ∈ Q1, Trd

D

(xz) = 0.

Indeed, for any x ∈ Q1, we have xγ (x) = xγ1(x) = Nrd
D

(x). Hence, q

z

(x) =

Trd
D

(xzx

−1Nrd
D

(x)) = Nrd
D

(x)Trd
D

(z) = 0. Moreover, considering the correspond-
ing bilinear form, we also get that for any x, y ∈ Q1, Trd

D

(xzγ (y)) = 0, and this gives
the second part of the claim by taking y = 1.
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Let us now denote by φ the isomorphism (Q3, γ3) ⊗ (Q4, γ4) ' (D, Int(u−1
) ◦ γ )

of Lemma 4.2. For any pure quaternion q ∈ Q

0
4, we let W

q

be the image under φ of the
3-dimensional subspace {x ⊗ q, x ∈ Q

0
3} of Q3 ⊗ Q4. We then have

Claim 4.5. The subspace γ (W

q

) of D is totally isotropic for q

u

.

Indeed, from the corresponding properties for {x ⊗ q, x ∈ Q

0
3}, any element y ∈ W

q

satisfies y

2
∈ F and Int(u−1

) ◦ γ (y) = y. Hence, we have γ (y)u = uy and q

u

(γ (y)) =

Trd
D

(γ (y)uy) = Trd
D

(uy

2
) = y

2Trd
D

(u) = 0.
Let us now denote by T the kernel of the linear form on D defined by z 7→ Trd

D

(uγ (z)).
Clearly, T ∩γ (W

q

) has dimension at least 2. Fix a 2 dimensional subspace V

q

⊂ T ∩γ (W

q

).
We then have

Claim 4.6. The subspace Q1 + V

q

of D is totally isotropic for q

u

.

Indeed, Q1 is totally isotropic by Claim 4.4, and since V

q

⊂ γ (W

q

), it also is by
Claim 4.5. Moreover, for any z ∈ V

q

⊂ T , we have Trd
D

(uγ (z)) = 0. Hence by
Claim 4.4(ii), Trd

D

(xuγ (z)) = 0 for any x ∈ Q1. Hence Q1 and V

q

are orthogonal, and
we get the claim.

To finish with, it only remains to prove that there exists some q ∈ Q

0
4 such that Q1 +V

q

has dimension greater than 5, i.e. V

q

is not contained in Q1. But if V

q

is contained in
Q1, then it is contained in Q

0
1 which has dimension 3. One may then choose another

pure quaternion q

′

∈ Q

0
4 which is linearly independent from q. This way, we get another

2 dimensional subspace V

q

′ which is in direct sum with V

q

, and which cannot also be
contained in Q

0
1. �
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Nauk. SSSR 261(3) (1981) 542–547; English translation: Soviet Math. Dokl. 24
(1981) 546–551

[Mer92] Merkurjev A, Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR Ser.
Mat. 55(1) (1992) 218–224; English translation: Math. USSR-Izv. 38(1) (1992)
215–221

[MS90] Merkurjev A and Suslin A, Norm residue homomorphism of degree three
(en russe), Izv. Akad. Nauk SSSR Ser. Mat. 54(2) (1990) 339–356; English trans-
lation: Math. USSR-Izv. 36(2) (1991) 349–367

[PSS01] Parimala R, Sridharan R and Suresh V, Hermitian analogue of a theorem of
Springer, J. Alg. 243 (2001) 780–789

[Sch85] Scharlau W, Quadratic and hermitian forms (Berlin: Springer) (1985)
[Sha00] Shapiro D B, Compositions of quadratic forms, Expositions in Mathematics

(De Gruyter) (2000) vol. 33
[ST] Serhir A and Tignol J-P, The discriminant of a decomposable symplectic involut-

ion, preprint
[Tao] Tao D, Pfister-form-like behavior of algebras with involution, unpublished docu-

ment
[Tao94] Tao D, A variety associated to an algebra with involution, J. Alg. 168(2) (1994)

479–520
[Wad72] Wadsworth A, Noetherian pairs and function fields of quadratic forms (Thesis,

University of Chicago) (1972)


