101 research outputs found

    Saddle Pressures Factors in Road and Off-Road Cyclists of Both Genders: A Narrative Review

    Get PDF
    : The contact point of the pelvis with the saddle of the bicycle could generate abnormal pressure, which could lead to injuries to the perineum in cyclists. The aim of this review was to summarize in a narrative way the current literature on the saddle pressures and to present the factors that influence saddle pressures in order to prevent injury risk in road and off-road cyclists of both genders. We searched the PubMed database to identify English-language sources, using the following terms: "saddle pressures", "pressure mapping", "saddle design" AND "cycling". We also searched the bibliographies of the retrieved articles. Saddle pressures are influenced by factors such as sitting time on the bike, pedaling intensity, pedaling frequency, trunk and hand position, handlebars position, saddle design, saddle height, padded shorts, and gender. The jolts of the perineum on the saddle, especially on mountain bikes, generate intermittent pressures, which represent a risk factor for various pathologies of the urogenital system. This review highlights the importance of considering these factors that influence saddle pressures in order to prevent urogenital system injuries in cyclists

    Rapid weight loss habits before a competition in sambo athletes

    Get PDF
    Background: Like other combat sports, sambo has competition rules that divide athletes into categories based on gender, age and weight. Athletes in combat sports often resort to rapid weight loss (RWL) methods to be more competitive in lower weight categories and gain an advantage against lighter, smaller and weaker competitors. The aim of this study was to examine the methodology implemented by two different sambo age categories, junior and senior athletes, in order to attain RWL. Methods: The sample consisted of 103 male sambo elite athletes (seniors/juniors: age 28.5 ± 4.3/18.9 ± 0.8; height (m): 1.7 ± 0.1/1.8 ± 0.1; weight (kg): 76.3 ± 17.8/74.4 ± 16.3; BMI (kg/m2): 25.0 ± 3.8/23.7 ± 3.9) who completed a survey on RWL. Results: Athletes reported losing a mean of 5 kg starting approximately 12 days before a competition. The most common methodology reported by senior and junior sambo athletes was gradually increasing dieting, followed by sauna and plastic suit training. Less common methods adopted were laxatives, diuretics, the use of diet pills and vomiting. There were significant group differences for sauna and diet pill ingestion. Coaches and parents are influential people in the lives of athletes concerning the weight loss strategy to be adopted. Conclusions: This study’s results unequivocally confirm the prevalent practice of RWL in both senior and junior sambo athletes. Although athletes prevalently chose “less harmful” methods, there is a need to inform parents and coaches of the risks and benefits of RWL

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Publisher's version (Ăștgefin grein)Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.Peterlongo laboratory is supported by Associazione Italiana Ricerca sul Cancro (AIRC; IG2015 no.16732) to P. Peterlongo and by a fellowship from Fondazione Umberto Veronesi to G. Figlioli. SurrallĂ©s laboratory is supported by the ICREA-Academia program, the Spanish Ministry of Health (projects FANCOSTEM and FANCOLEN), the Spanish Ministry of Economy and Competiveness (projects CB06/07/0023 and RTI2018-098419-B-I00), the European Commission (EUROFANCOLEN project HEALTH-F5-2012-305421 and P-SPHERE COFUND project), the Fanconi Anemia Research Fund Inc, and the “Fondo Europeo de Desarrollo Regional, una manera de hacer Europa” (FEDER). CIBERER is an initiative of the Instituto de Salud Carlos III, Spain. BCAC: we thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. ABCFS thank Maggie Angelakos, Judi Maskiell, Tu Nguyen-Dumont is a National Breast Cancer Foundation (Australia) Career Development Fellow. ABCS thanks the Blood bank Sanquin, The Netherlands. Samples are made available to researchers on a non-exclusive basis. BCEES thanks Allyson Thomson, Christobel Saunders, Terry Slevin, BreastScreen Western Australia, Elizabeth Wylie, Rachel Lloyd. The BCINIS study would not have been possible without the contributions of Dr. Hedy Rennert, Dr. K. Landsman, Dr. N. Gronich, Dr. A. Flugelman, Dr. W. Saliba, Dr. E. Liani, Dr. I. Cohen, Dr. S. Kalet, Dr. V. Friedman, Dr. O. Barnet of the NICCC in Haifa, and all the contributing family medicine, surgery, pathology and oncology teams in all medical institutes in Northern Israel. The BREOGAN study would not have been possible without the contributions of the following: Manuela Gago-Dominguez, Jose Esteban Castelao, Angel Carracedo, Victor Muñoz GarzĂłn, Alejandro Novo DomĂ­nguez, Maria Elena Martinez, Sara Miranda Ponte, Carmen Redondo Marey, Maite Peña FernĂĄndez, Manuel Enguix Castelo, Maria Torres, Manuel Calaza (BREOGAN), JosĂ© AntĂșnez, MĂĄximo Fraga and the staff of the Department of Pathology and Biobank of the University Hospital Complex of Santiago-CHUS, Instituto de InvestigaciĂłn Sanitaria de Santiago, IDIS, Xerencia de Xestion Integrada de Santiago-SERGAS; JoaquĂ­n GonzĂĄlez-CarrerĂł and the staff of the Department of Pathology and Biobank of University Hospital Complex of Vigo, Instituto de Investigacion Biomedica Galicia Sur, SERGAS, Vigo, Spain. BSUCH thanks Peter Bugert, Medical Faculty Mannheim. CBCS thanks study participants, co-investigators, collaborators and staff of the Canadian Breast Cancer Study, and project coordinators Agnes Lai and Celine Morissette. CCGP thanks Styliani Apostolaki, Anna Margiolaki, Georgios Nintos, Maria Perraki, Georgia Saloustrou, Georgia Sevastaki, Konstantinos Pompodakis. CGPS thanks staff and participants of the Copenhagen General Population Study. For the excellent technical assistance: Dorthe Uldall Andersen, Maria Birna Arnadottir, Anne Bank, Dorthe KjeldgĂ„rd Hansen. The Danish Cancer Biobank is acknowledged for providing infrastructure for the collection of blood samples for the cases. Investigators from the CPS-II cohort thank the participants and Study Management Group for their invaluable contributions to this research. They also acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, as well as cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. The CTS Steering Committee includes Leslie Bernstein, Susan Neuhausen, James Lacey, Sophia Wang, Huiyan Ma, and Jessica Clague DeHart at the Beckman Research Institute of City of Hope, Dennis Deapen, Rich Pinder, and Eunjung Lee at the University of Southern California, Pam Horn-Ross, Peggy Reynolds, Christina Clarke Dur and David Nelson at the Cancer Prevention Institute of California, Hoda Anton-Culver, Argyrios Ziogas, and Hannah Park at the University of California Irvine, and Fred Schumacher at Case Western University. DIETCOMPLYF thanks the patients, nurses and clinical staff involved in the study. The DietCompLyf study was funded by the charity Against Breast Cancer (Registered Charity Number 1121258) and the NCRN. We thank the participants and the investigators of EPIC (European Prospective Investigation into Cancer and Nutrition). ESTHER thanks Hartwig Ziegler, Sonja Wolf, Volker Hermann, Christa Stegmaier, Katja Butterbach. FHRISK thanks NIHR for funding. GC-HBOC thanks Stefanie Engert, Heide Hellebrand, Sandra Kröber and LIFE - Leipzig Research Centre for Civilization Diseases (Markus Loeffler, Joachim Thiery, Matthias NĂŒchter, Ronny Baber). The GENICA Network: Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of TĂŒbingen, Germany [HB, Wing-Yee Lo], German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) [HB], Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2180 - 390900677 [HB], Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany [Yon-Dschun Ko, Christian Baisch], Institute of Pathology, University of Bonn, Germany [Hans-Peter Fischer], Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany [Ute Hamann], Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany [TB, Beate Pesch, Sylvia Rabstein, Anne Lotz]; and Institute of Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany [Volker Harth]. HABCS thanks Michael Bremer. HEBCS thanks Heidi Toiminen, Kristiina AittomĂ€ki, Irja ErkkilĂ€ and Outi Malkavaara. HMBCS thanks Peter Hillemanns, Hans Christiansen and Johann H. Karstens. HUBCS thanks Shamil Gantsev. KARMA thanks the Swedish Medical Research Counsel. KBCP thanks Eija MyöhĂ€nen, Helena KemilĂ€inen. LMBC thanks Gilian Peuteman, Thomas Van Brussel, EvyVanderheyden and Kathleen Corthouts. MABCS thanks Milena Jakimovska (RCGEB “Georgi D. Efremov), Katerina Kubelka, Mitko Karadjozov (Adzibadem-Sistina” Hospital), Andrej Arsovski and Liljana Stojanovska (Re-Medika” Hospital) for their contributions and commitment to this study. MARIE thanks Petra Seibold, Dieter Flesch-Janys, Judith Heinz, Nadia Obi, Alina Vrieling, Sabine Behrens, Ursula Eilber, Muhabbet Celik, Til Olchers and Stefan Nickels. MBCSG (Milan Breast Cancer Study Group) thanks Daniela Zaffaroni, Irene Feroce, and the personnel of the Cogentech Cancer Genetic Test Laboratory. We thank the coordinators, the research staff and especially the MMHS participants for their continued collaboration on research studies in breast cancer. MSKCC thanks Marina Corines and Lauren Jacobs. MTLGEBCS would like to thank Martine Tranchant (CHU de QuĂ©bec Research Center), Marie-France Valois, Annie Turgeon and Lea Heguy (McGill University Health Center, Royal Victoria Hospital; McGill University) for DNA extraction, sample management and skillful technical assistance. J.S. is Chairholder of the Canada Research Chair in Oncogenetics. NBHS thanks study participants and research staff for their contributions and commitment to the studies. We would like to thank the participants and staff of the Nurses’ Health Study and Nurses’ Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. The authors assume full responsibility for analyses and interpretation of these data. OFBCR thanks Teresa Selander and Nayana Weerasooriya. ORIGO thanks E. Krol-Warmerdam, and J. Blom for patient accrual, administering questionnaires, and managing clinical information. PBCS thanks Louise Brinton, Mark Sherman, Neonila Szeszenia-Dabrowska, Beata Peplonska, Witold Zatonski, Pei Chao and Michael Stagner. The ethical approval for the POSH study is MREC /00/6/69, UKCRN ID: 1137. We thank staff in the Experimental Cancer Medicine Centre (ECMC) supported Faculty of Medicine Tissue Bank and the Faculty of Medicine DNA Banking resource. PREFACE thanks Sonja Oeser and Silke Landrith. PROCAS thanks NIHR for funding. RBCS thanks Petra Bos, Jannet Blom, Ellen Crepin, Elisabeth Huijskens, Anja Kromwijk-Nieuwlaat, Annette Heemskerk, the Erasmus MC Family Cancer Clinic. We thank the SEARCH and EPIC teams. SKKDKFZS thanks all study participants, clinicians, family doctors, researchers and technicians for their contributions and commitment to this study. We thank the SUCCESS Study teams in Munich, Duessldorf, Erlangen and Ulm. SZBCS thanks Ewa Putresza. UCIBCS thanks Irene Masunaka. UKBGS thanks Breast Cancer Now and the Institute of Cancer Research for support and funding of the Breakthrough Generations Study, and the study participants, study staff, and the doctors, nurses and other health care providers and health information sources who have contributed to the study. We acknowledge NHS funding to the Royal Marsden/ICR NIHR Biomedical Research Centre. CIMBA: we are grateful to all the families and clinicians who contribute to the studies; Sue Healey, in particular taking on the task of mutation classification with the late Olga Sinilnikova; Maggie Angelakos, Judi Maskiell, Helen Tsimiklis; members and participants in the New York site of the Breast Cancer Family Registry; members and participants in the Ontario Familial Breast Cancer Registry; Vilius Rudaitis and Laimonas GriĆĄkevičius; Yuan Chun Ding and Linda Steele for their work in participant enrollment and biospecimen and data management; Bent Ejlertsen and Anne-Marie Gerdes for the recruitment and genetic counseling of participants; Alicia Barroso, Rosario Alonso and Guillermo Pita; all the individuals and the researchers who took part in CONSIT TEAM (Consorzio Italiano Tumori Ereditari Alla Mammella), thanks in particular: Giulia Cagnoli, Roberta Villa, Irene Feroce, Mariarosaria Calvello, Riccardo Dolcetti, Giuseppe Giannini, Laura Papi, Gabriele Lorenzo Capone, Liliana Varesco, Viviana Gismondi, Maria Grazia Tibiletti, Daniela Furlan, Antonella Savarese, Aline Martayan, Stefania Tommasi, Brunella Pilato, Isabella Marchi, Elena Bandieri, Antonio Russo, Daniele Calistri and the personnel of the Cogentech Cancer Genetic Test Laboratory, Milan, Italy. FPGMX: members of the Cancer Genetics group (IDIS): Ana Blanco, Miguel Aguado, UxĂ­a EsperĂłn and Belinda RodrĂ­guez. We thank all participants, clinicians, family doctors, researchers, and technicians for their contributions and commitment to the DKFZ study and the collaborating groups in Lahore, Pakistan (Noor Muhammad, Sidra Gull, Seerat Bajwa, Faiz Ali Khan, Humaira Naeemi, Saima Faisal, Asif Loya, Mohammed Aasim Yusuf) and Bogota, Colombia (Diana Torres, Ignacio Briceno, Fabian Gil). Genetic Modifiers of Cancer Risk in BRCA1/2 Mutation Carriers (GEMO) study is a study from the National Cancer Genetics Network UNICANCER Genetic Group, France. We wish to pay a tribute to Olga M. Sinilnikova, who with Dominique Stoppa-Lyonnet initiated and coordinated GEMO until she sadly passed away on the 30th June 2014. The team in Lyon (Olga Sinilnikova, MĂ©lanie LĂ©onĂ©, Laure Barjhoux, Carole Verny-Pierre, Sylvie Mazoyer, Francesca Damiola, ValĂ©rie Sornin) managed the GEMO samples until the biological resource centre was transferred to Paris in December 2015 (Noura Mebirouk, Fabienne Lesueur, Dominique Stoppa-Lyonnet). We want to thank all the GEMO collaborating groups for their contribution to this study. Drs.Sofia Khan, Irja ErkkilĂ€ and Virpi Palola; The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centers: Netherlands Cancer Institute (coordinating center), Amsterdam, NL: M.A. Rookus, F.B.L. Hogervorst, F.E. van Leeuwen, M.A. Adank, M.K. Schmidt, N.S. Russell, D.J. Jenner; Erasmus Medical Center, Rotterdam, NL: J.M. CollĂ©e, A.M.W. van den Ouweland, M.J. Hooning, C.M. Seynaeve, C.H.M. van Deurzen, I.M. Obdeijn; Leiden University Medical Center, NL: C.J. van Asperen, P. Devilee, T.C.T.E.F. van Cronenburg; Radboud University Nijmegen Medical Center, NL: C.M. Kets, A.R. Mensenkamp; University Medical Center Utrecht, NL: M.G.E.M. Ausems, M.J. Koudijs; Amsterdam Medical Center, NL: C.M. Aalfs, H.E.J. Meijers-Heijboer; VU University Medical Center, Amsterdam, NL: K. van Engelen, J.J.P. Gille; Maastricht University Medical Center, NL: E.B. GĂłmez-Garcia, M.J. Blok; University of Groningen, NL: J.C. Oosterwijk, A.H. van der Hout, M.J. Mourits, G.H. de Bock; The Netherlands Comprehensive Cancer Organisation (IKNL): S. Siesling, J.Verloop; The nationwide network and registry of histo- and cytopathology in The Netherlands (PALGA): A.W. van den Belt-Dusebout. HEBON thanks the study participants and the registration teams of IKNL and PALGA for part of the data collection. Overbeek; the Hungarian Breast and Ovarian Cancer Study Group members (Janos Papp, Aniko Bozsik, Zoltan Matrai, Miklos Kasler, Judit Franko, Maria Balogh, Gabriella Domokos, Judit Ferenczi, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study; HVH (University Hospital Vall d’Hebron) the authors acknowledge the Oncogenetics Group (VHIO) and the High Risk and Cancer Prevention Unit of the University Hospital Vall d’Hebron, Miguel Servet Progam (CP10/00617), and the Cellex Foundation for providing research facilities and equipment; the ICO Hereditary Cancer Program team led by Dr. Gabriel Capella; the ICO Hereditary Cancer Program team led by Dr. Gabriel Capella; Dr Martine Dumont for sample management and skillful assistance; Catarina Santos and Pedro Pinto; members of the Center of Molecular Diagnosis, Oncogenetics Department and Molecular Oncology Research Center of Barretos Cancer Hospital; Heather Thorne, Eveline Niedermayr, all the kConFab investigators, research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab; the investigators of the Australia New Zealand NRG Oncology group; members and participants in the Ontario Cancer Genetics Network; Kevin Sweet, Caroline Craven, Julia Cooper, Amber Aielts, and Michelle O’Conor; Christina Selkirk; Helena Jernström, Karin Henriksson, Katja Harbst, Maria Soller, Ulf Kristoffersson; from Gothenburg Sahlgrenska University Hospital: Anna Öfverholm, Margareta Nordling, Per Karlsson, Zakaria Einbeigi; from Stockholm and Karolinska University Hospital: Anna von Wachenfeldt, Annelie Liljegren, Annika Lindblom, Brita Arver, Gisela Barbany Bustinza; from UmeĂ„ University Hospital: Beatrice Melin, Christina Edwinsdotter Ardnor, Monica Emanuelsson; from Uppsala University: Hans Ehrencrona, Maritta Hellström Pigg, Richard Rosenquist; from Linköping University Hospital: Marie Stenmark-Askmalm, Sigrun Liedgren; Cecilia Zvocec, Qun Niu; Joyce Seldon and Lorna Kwan; Dr. Robert Nussbaum, Beth Crawford, Kate Loranger, Julie Mak, Nicola Stewart, Robin Lee, Amie Blanco and Peggy Conrad and Salina Chan; Carole Pye, Patricia Harrington and Eva Wozniak. OSUCCG thanks Kevin Sweet, Caroline Craven, Julia Cooper, Michelle O’Conor and Amber Aeilts. BCAC is funded by Cancer Research UK [C1287/A16563, C1287/A10118], the European Union’s Horizon 2020 Research and Innovation Programme (grant numbers 634935 and 633784 for BRIDGES and B-CAST respectively), and by the European CommunityÂŽs Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009-223175) (COGS). The EU Horizon 2020 Research and Innovation Programme funding source had no role in study design, data collection, data analysis, data interpretation or writing of the report. Genotyping of the OncoArray was funded by the NIH Grant U19 CA148065, and Cancer UK Grant C1287/A16563 and the PERSPECTIVE project supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research (grant GPH-129344) and, the MinistĂšre de l’Économie, Science et Innovation du QuĂ©bec through Genome QuĂ©bec and the PSRSIIRI-701 grant, and the Quebec Breast Cancer Foundation. The Australian Breast Cancer Family Study (ABCFS) was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow. M.C.S. is a NHMRC Senior Research Fellow. The ABCS study was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009 4363]. The Australian Breast Cancer Tissue Bank (ABCTB) was supported by the National Health and Medical Research Council of Australia, The Cancer Institute NSW and the National Breast Cancer Foundation. The AHS study is supported by the intramural research program of the National Institutes of Health, the National Cancer Institute (grant number Z01-CP010119), and the National Institute of Environmental Health Sciences (grant number Z01-ES049030). The work of the BBCC was partly funded by ELAN-Fond of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breast Cancer Now and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). The BCEES was funded by the National Health and Medical Research Council, Australia and the Cancer Council Western Australia. For the BCFR-NY, BCFR-PA, BCFR-UT this work was supported by grant UM1 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. BCINIS study was funded by the BCRF (The Breast Cancer Research Foundation, USA). The BREast Oncology GAlician Network (BREOGAN) is funded by AcciĂłn EstratĂ©gica de Salud del Instituto de Salud Carlos III FIS PI12/02125/Cofinanciado FEDER; AcciĂłn EstratĂ©gica de Salud del Instituto de Salud Carlos III FIS Intrasalud (PI13/01136); Programa Grupos Emergentes, Cancer Genetics Unit, Instituto de Investigacion Biomedica Galicia Sur. Xerencia de Xestion Integrada de Vigo-SERGAS, Instituto de Salud Carlos III, Spain; Grant 10CSA012E, ConsellerĂ­a de Industria Programa Sectorial de InvestigaciĂłn Aplicada, PEME I + D e I + D Suma del Plan Gallego de InvestigaciĂłn, Desarrollo e InnovaciĂłn TecnolĂłgica de la ConsellerĂ­a de Industria de la Xunta de Galicia, Spain; Grant EC11-192. Fomento de la InvestigaciĂłn ClĂ­nica Independiente, Ministerio de Sanidad, Servicios Sociales e Igualdad, Spain; and Grant FEDER-Innterconecta. Ministerio de Economia y Competitividad, Xunta de Galicia,

    Applicability of the Cumberland Ankle Instability Tool in Elite Volleyball Athletes: A Cross-Sectional Observational Study

    Get PDF
    Background: The ease of administration of the Cumberland Ankle Instability Tool (CAIT) could represent a methodology for periodically evaluating athletes, preventing ankle instability injuries. This study aimed to achieve three objectives: (a) to evaluate the applicability of the CAIT scale in volleyball; (b) to explore whether ankle instability presents a greater risk in lower-level volleyball categories and whether elite athletes demonstrate an ability to mitigate this risk; and (c) to identify potential predictors of ankle instability. Methods: Eighty female volleyball players participated in this cross-sectional observational study. The CAIT was administered to evaluate the athletes belonging to some teams in Series A, B, and C. Results: The Spearman's ranks correlation coefficient showed significant correlations between CAIT items. Additionally, the Cronbach's alpha showed a high internal consistency. Our results showed a significant difference between athletes who reported pain and those who did not (p < 0.001). The multiple linear regression model analysis showed that pain was a predictor of ankle instability (p < 0.001). Conclusions: Our findings suggest that the CAIT can be used to evaluate ankle stability in volleyball players. This scale could represent a valuable tool for implementing specific intervention programs to prevent ankle injuries in athletes

    Patterns of rapid weight loss in elite sambo athletes

    Get PDF
    Background: Rapid weight loss (RWL) is commonly practiced in combat sports. Both magnitude and methods used to induce RWL are largely similar among combat sports, but currently, there is no data on RWL methodology used by sambo athletes. Therefore, the aim of this study was to determine RWL procedures sambo athletes apply to lose weight rapidly. Methods: The sample consisted of 199 participants, of which 132 males and 67 females who participated in the World Sambo Championship 2020 held in Novi Sad, Serbia. Each participant received RWL questionnaire that was available in multiple languages, and every participant was instructed how to fill it out. Results: Almost 87% of sambo participants declared to have intentionally cut their weight prior to the competition, whereby 5.27 kg (SD: ±7.57) was lost. Gradual dieting, sauna use and skipping meals were the most dominant methods used to reduce weight prior to competition while more extreme methods of RWL such as the use of laxatives, diuretics, diet pills and vomiting were also implemented but by much smaller fragment of the participants involved. Conclusions: Findings from our study largely match with previously conducted RWL studies in terms of prevalence, magnitude and methods used by combat sport athletes, especially in judo and wrestling. Knowing the hazardous consequences of RWL, alternative methods of sustainable weight loss should be considered

    Effects of Cycling on Spine: A Case–Control Study Using a 3D Scanning Method

    Get PDF
    Background: Few studies have investigated the effects of adopting a specific and prolonged posture on cyclists. This study aimed to evaluate the upright spine in a sample of recreational cyclists and compare it with a sample of non-cyclists, though still athletes, through a 3D scanning method. Methods: Forty-eight participants were enrolled in this observational study. The sample consisted of 25 cyclists for the cycling group and 23 non-cyclist athletes for the control group. The Spine3D device (Sensor Medica, Guidonia Montecelio, Rome, Italy) was used to evaluate the spine of the participants in both groups. Results: The results showed significantly greater spine inclination in the cycling group compared to the control group (p < 0.01). Furthermore, there was a significant decrease in lumbar lordosis in the cycling group compared to the control group (p < 0.01). Conclusions: This case-control study raises the possibility that the onset of lower back pain in cyclists may be due to a reduction in lumbar lordosis. Furthermore, this study demonstrated that the Spine3D device can be used in sports to monitor the spine of athletes to prevent and reduce musculoskeletal deficits

    The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases

    Get PDF
    Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2-4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.Peer reviewe

    Manual dexterity in school-age children measured by the Grooved Pegboard test: Evaluation of training effect and performance in dual-task

    Get PDF
    ackground: Manual dexterity is the ability to manipulate objects using the hands and fingers for a specific task. Although manual dexterity is widely investigated in the general and special popu- lation at all ages, numerous aspects still remain to be explored in children. The aim of this study was to assess the presence of the training effect of the execution of the Grooved Pegboard test (GPT) and to measure the performance of the GPT in dual-task (DT), i.e., during a motor task and a cognitive task. Methods: In this observational, cross-sectional study manual dexterity was assessed in children aged between 6 and 8. The procedure consisted of two phases: (1) the execution of five consecutive trials of the GPT to evaluate the training effect; (2) the execution of one trial of the GPT associated with a motor task (finger tapping test, GPT-FTT), and one trial of the GPT asso- ciated with a cognitive task (counting test, GPT-CT) to evaluate the performance in DT. Results: As for the training effect, a significant difference (p < 0.001) between the five trials of the GPT (i.e., GPT1, GPT2, GPT3, GPT4, GPT5) was detected. In particular, we found a significant difference between GPT1 and GPT3 (p < 0.05), GPT1 and GPT4 (p < 0.001), and GPT1 and GPT5 (p < 0.001), as well as between GPT2 and GPT4 (p < 0.001), and GPT2 and GPT5 (p < 0.001). As for the performance in DT, no differences between the best trial of the GPT (i.e., GPT5) and both the GPT-FTT and GPT-CT was found. Conclusion: Our findings suggest that the execution of the GPT in children has a training effect up to the third consecutive trial. Furthermore, the administration of the GPT in DT does not affect GPT performance

    Runs of homozygosity and inbreeding in thyroid cancer

    Get PDF
    BACKGROUND: Genome-wide association studies (GWASs) have identified several single-nucleotide polymorphisms (SNPs) influencing the risk of thyroid cancer (TC). Most cancer predisposition genes identified through GWASs function in a co-dominant manner, and studies have not found evidence for recessively functioning disease loci in TC. Our study examines whether homozygosity is associated with an increased risk of TC and searches for novel recessively acting disease loci. METHODS: Data from a previously conducted GWAS were used for the estimation of the proportion of phenotypic variance explained by all common SNPs, the detection of runs of homozygosity (ROH) and the determination of inbreeding to unravel their influence on TC. RESULTS: Inbreeding coefficients were significantly higher among cases than controls. Association on a SNP-by-SNP basis was controlled by using the false discovery rate at a level of q* < 0.05, with 34 SNPs representing true differences in homozygosity between cases and controls. The average size, the number and total length of ROHs per person were significantly higher in cases than in controls. A total of 16 recurrent ROHs of rather short length were identified although their association with TC risk was not significant at a genome-wide level. Several recurrent ROHs harbor genes associated with risk of TC. All of the ROHs showed significant evidence for natural selection (iHS, Fst, Fay and Wu's H). CONCLUSIONS: Our results support the existence of recessive alleles in TC susceptibility. Although regions of homozygosity were rather small, it might be possible that variants within these ROHs affect TC risk and may function in a recessive manner

    The FANCM : p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PAM, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and pArg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM(-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.Peer reviewe
    • 

    corecore