12,022 research outputs found

    Photon subtracted states and enhancement of nonlocality in the presence of noise

    Full text link
    We address nonlocality of continuous variable systems in the presence of dissipation and noise. Three nonlocality tests have been considered, based on the measurement of displaced-parity, field-quadrature and pseudospin-operator, respectively. Nonlocality of twin beam has been investigated, as well as that of its non-Gaussian counterparts obtained by inconclusive subtraction of photons. Our results indicate that: i) nonlocality of twin beam is degraded but not destroyed by noise; ii) photon subtraction enhances nonlocality in the presence of noise, especially in the low-energy regime.Comment: 12 pages, 7 figure

    A criterion for entanglement in two two-level systems

    Full text link
    We prove a necessary and sufficient condition for the occurrence of entanglement in two two-level systems, simple enough to be of experimental interest. Our results are illustrated in the context of a spin star system analyzing the exact entanglement evolution of the central couple of spins.Comment: 4 pages, Submitted to Physical Review Letter

    Squeezed Fock state by inconclusive photon subtraction

    Full text link
    We analyze in details the properties of the conditional state recently obtained by J. Wenger, et al. [Phys. Rev. Lett. {\bf 92}, 153601 (2004)] by means of inconclusive photon subtraction (IPS) on a squeezed vacuum state S(r)0S(r)\ket{0}. The IPS process can be characterized by two parameters: the IPS transmissivity τ\tau and the photodetection quantum efficiency η\eta. We found that the conditional state approaches the squeezed Fock state S(r)1S(r)\ket{1} when τ,η1\tau,\eta \to 1, i.e., in the limit of single-photon subtraction. For non-unit IPS transmissivity and efficiency, the conditioned state remains close to the target state, {\em i.e.} shows a high fidelity for a wide range of experimental parameters. The nonclassicality of the conditional state is also investigated and a nonclassicality threshold on the IPS parameters is derived.Comment: 10 pages, 7 figure

    On the limitations of a measurement-assisted optomechanical route to quantum macroscopicity of superposition states

    Full text link
    Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as macroscopic. We show that, according to the phase space-based criterion that we have chosen for our quantitative analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding experimental conditions.Comment: 7 pages, 4 figures, RevTeX4-1; accepted for publication in Phys Rev

    The optical companion to the binary millisecond pulsar J1824-2452H in the globular cluster M28

    Full text link
    We report on the optical identification of the companion star to the eclipsing millisecond pulsar PSR J1824-2452H in the galactic globular cluster M28 (NGC 6626). This star is at only 0.2" from the nominal position of the pulsar and it shows optical variability (~ 0.25 mag) that nicely correlates with the pulsar orbital period. It is located on the blue side of the cluster main sequence, ~1.5 mag fainter than the turn-off point. The observed light curve shows two distinct and asymmetric minima, suggesting that the companion star is suffering tidal distortion from the pulsar. This discovery increases the number of non-degenerate MSP companions optically identified so far in globular clusters (4 out of 7), suggesting that these systems could be a common outcome of the pulsar recycling process, at least in dense environments where they can be originated by exchange interactions.Comment: accepted for publication on ApJ, 17 pages, 5 figure

    Finite frequency noise for edge states at filling factor ν=2/5\nu=2/5

    Full text link
    We investigate the properties of the finite frequency noise in a quantum point contact geometry for the fractional quantum Hall state at filling factor ν=2/5\nu=2/5. The results are obtained in the framework of the Wen's hierarchical model. We show that the peak structure of the colored noise allows to discriminate among different possible excitations involved in the tunneling. In particular, optimal values of voltage and temperature are found in order to enhance the visibility of the peak associated with the tunneling of a 2-agglomerate, namely an excitation with charge double of the fundamental one associated to the single quasiparticle.Comment: 5 pages, 1 figure, to be published in the Proceedings of the Conference on the Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT11

    Horizontal-Branch Models and the Second-Parameter Effect. IV. The Case of M3 and Palomar 3

    Full text link
    We present a detailed analysis of the "second-parameter pair" of globular clusters M3 (NGC 5272) and Palomar 3. Our main results can be summarized as follows: i) The horizontal-branch (HB) morphology of M3 is significantly bluer in its inner regions (observed with the Hubble Space Telescope) than in the cluster outskirts (observed from the ground), i.e., M3 has an internal second parameter. Most plausibly the mass loss on the red giant branch (RGB) has been more efficient in the inner than in the outer regions of the cluster. ii) The dispersion in mass of the Pal 3 HB is found to be very small -- consistent with zero -- and we argue that this is unlikely to be due to a statistical fluctuation. It is this small mass dispersion that leads to the most apparent difference in the HB morphologies of M3 and Pal 3. iii) The relative HB types of M3 and Pal 3, as measured by mean colors or parameters involving the number of blue, variable, and red HB stars, can easily be accounted for by a fairly small difference in age between these clusters, of order 0.5-1 Gyr -- which is in good agreement with the relative age measurement, based on the clusters' turnoffs, by VandenBerg (2000).Comment: 20 pages, 12 figures, emulateapj5 style. The Astrophysical Journal, in press. Figs. 1, 6, 9, 10 are in png format. The preprint (postscript format) with full resolution (embedded) figures is available from http://www.astro.virginia.edu/~mc6v

    Selective cloning of Gaussian states by linear optics

    Full text link
    We investigate the performances of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows to clone at will one of the two incoming input states. This machine is a complete generalization of a 1 to 2 cloning scheme demonstrated by U. L. Andersen et al. [Phys. Rev. Lett. vol. 94, 240503 (2005)]. The input-output fidelity is studied for generic Gaussian input state and the effect of non-unit quantum efficiency is also taken into account. We show that if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machne is also discussed.Comment: 6 pages, 6 figure

    Modeling the chemical evolution of Omega Centauri using three-dimensional hydrodynamical simulations

    Full text link
    We present a hydrodynamical and chemical model for the globular cluster Omega Cen, under the assumption that it is the remnant of an ancient dwarf spheroidal galaxy (dSph), the bulk of which was disrupted and accreted by our Galaxy ~10 Gyr ago. We highlight the very different roles played by Type II and Type Ia supernovae (SNe) in the chemical enrichment of the inner regions of the putative parent dSph. While the SNe II pollute the interstellar medium rather uniformly, the SNe Ia ejecta may remain confined inside dense pockets of gas as long as succesive SNe II explosions spread them out. Stars forming in such pockets have lower alpha-to-iron ratios than the stars forming elsewhere. Owing to the inhomogeneous pollution by SNe Ia, the metal distribution of the stars in the central region differs substantially from that of the main population of the dwarf galaxy, and resembles that observed in Omega Cen. This inhomogeneous mixing is also responsible for a radial segregation of iron-rich stars with depleted [alpha/Fe] ratios, as observed in some dSphs. Assuming a star formation history of ~1.5 Gyr, our model succeeds in reproducing both the iron and calcium distributions observed in Omega Cen and the main features observed in the empirical alpha/Fe versus Fe/H plane. Finally, our model reproduces the overall spread of the color-magnitude diagram, but fails in reproducing the morphology of the SGB-a and the double morphology of the main sequence. However, the inhomogeneous pollution reduces (but does not eliminate) the need for a significantly enhanced helium abundance to explain the anomalous position of the blue main sequence. Further models taking into account the dynamical interaction of the parent dwarf galaxy with the Milky Way and the effect of AGB pollution will be required.Comment: 15 pages, 13 figures. MNRAS accepte

    Entanglement sudden death and sudden birth in two uncoupled spins

    Full text link
    We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden birth acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory
    corecore