38 research outputs found

    Photoinitiated Synthesis of Self-Assembled Vesicles

    No full text
    The aqueous photochemistry of 2-oxooctanoic acid (a single-tailed surfactant) results in the synthesis of a double-tailed surfactant product followed by spontaneous self-assembly into vesicles. The photochemical mechanism is detailed here, and the reaction products are identified using mass spectrometry. Then, the self-assembled vesicles are characterized using dynamic light scattering, fluorescence microscopy, and NMR. Further, their stability over time and in the presence of MgCl2 salt is demonstrated. This work contributes to membrane evolution through the provision of a prebiotic route for the synthesis of plausible membrane components and subsequent self-assembly of a primitive enclosure

    The Microfluidic Jukebox

    No full text
    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications
    corecore