17,399 research outputs found
Observation of Single Transits in Supercooled Monatomic Liquids
A transit is the motion of a system from one many-particle potential energy
valley to another. We report the observation of transits in molecular dynamics
(MD) calculations of supercooled liquid argon and sodium. Each transit is a
correlated simultaneous shift in the equilibrium positions of a small local
group of particles, as revealed in the fluctuating graphs of the particle
coordinates versus time. This is the first reported direct observation of
transit motion in a monatomic liquid in thermal equilibrium. We found transits
involving 2 to 11 particles, having mean shift in equilibrium position on the
order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest
neighbor distance. The time it takes for a transit to occur is approximately
one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure
A farm creaming experiment
A short time ago we were asked whether any injustice would result to either creamery-man or patron, if the latter should set his evening’s milk, skim it in the morning, mix the cream with the morning’s milk and send the mixture to the creamery instead of sending the milk of both evening and morning, as is the usual custom. The most satisfactory way to answer all such queries is by practical demonstrations, and it was determined to conduct an experiment bearing on the point in question.
A short time ago we were asked whether any injustice would result to either creamery-man or patron, if the latter should set his evening’s milk, skim it in the morning, mix the cream with the morning’s milk and send the mixture to the creamery instead of sending the milk of both evening and morning, as is the usual custom. The most satisfactory way to answer all such queries is by practical demonstrations, and it was determined to conduct an experiment bearing on the point in question
Elastic fluctuations as observed in a confocal slice
Recent confocal experiments on colloidal solids motivate a fuller study of
the projection of three-dimensional fluctuations onto a two-dimensional
confocal slice. We show that the effective theory of a projected crystal
displays several exceptional features, such as non-standard exponents in the
dispersion relations. We provide analytic expressions for the effective
two-dimensional elastic properties which allow one to work back from sliced
experimental observations to three-dimensional elastic constants.Comment: 5 pages, 2 figure
Consistent thermodynamic derivative estimates for tabular equations of state
Numerical simulations of compressible fluid flows require an equation of
state (EOS) to relate the thermodynamic variables of density, internal energy,
temperature, and pressure. A valid EOS must satisfy the thermodynamic
conditions of consistency (derivation from a free energy) and stability
(positive sound speed squared). When phase transitions are significant, the EOS
is complicated and can only be specified in a table. For tabular EOS's such as
SESAME from Los Alamos National Laboratory, the consistency and stability
conditions take the form of a differential equation relating the derivatives of
pressure and energy as functions of temperature and density, along with
positivity constraints. Typical software interfaces to such tables based on
polynomial or rational interpolants compute derivatives of pressure and energy
and may enforce the stability conditions, but do not enforce the consistency
condition and its derivatives. We describe a new type of table interface based
on a constrained local least squares regression technique. It is applied to
several SESAME EOS's showing how the consistency condition can be satisfied to
round-off while computing first and second derivatives with demonstrated
second-order convergence. An improvement of 14 orders of magnitude over
conventional derivatives is demonstrated, although the new method is apparently
two orders of magnitude slower, due to the fact that every evaluation requires
solving an 11-dimensional nonlinear system.Comment: 29 pages, 9 figures, 16 references, submitted to Phys Rev
Equation of state of cubic boron nitride at high pressures and temperatures
We report accurate measurements of the equation of state (EOS) of cubic boron
nitride by x-ray diffraction up to 160 GPa at 295 K and 80 GPa in the range
500-900 K. Experiments were performed on single-crystals embedded in a
quasi-hydrostatic pressure medium (helium or neon). Comparison between the
present EOS data at 295 K and literature allows us to critically review the
recent calibrations of the ruby standard. The full P-V-T data set can be
represented by a Mie-Gr\"{u}neisen model, which enables us to extract all
relevant thermodynamic parameters: bulk modulus and its first
pressure-derivative, thermal expansion coefficient, thermal Gr\"{u}neisen
parameter and its volume dependence. This equation of state is used to
determine the isothermal Gr\"{u}neisen mode parameter of the Raman TO band. A
new formulation of the pressure scale based on this Raman mode, using
physically-constrained parameters, is deduced.Comment: 8 pages, 7 figure
Dynamics of monatomic liquids
We present a theory of the dynamics of monatomic liquids built on two basic
ideas: (1) The potential surface of the liquid contains three classes of
intersecting nearly-harmonic valleys, one of which (the ``random'' class)
vastly outnumbers the others and all whose members have the same depth and
normal mode spectrum; and (2) the motion of particles in the liquid can be
decomposed into oscillations in a single many-body valley, and nearly
instantaneous inter-valley transitions called transits. We review the
thermodynamic data which led to the theory, and we discuss the results of
molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which
support the theory in more detail. Then we apply the theory to problems in
equilibrium and nonequilibrium statistical mechanics, and we compare the
results to experimental data and MD simulations. We also discuss our work in
comparison with the QNM and INM research programs and suggest directions for
future research.Comment: 53 pages, 16 figures. Differs from published version in using
American English spelling and grammar (published version uses British
English
FU Orionis resolved by infrared long baseline interferometry at a 2-AU scale
We present the first infrared interferometric observations of a young stellar
object with a spatial projected resolution better than 2 AU. The observations
were obtained with the Palomar Testbed Interferometer. FU Ori exhibits a
visibility of V^2 =0.72 +/- 0.07 for a 103 +/- 5 m projected baseline at lambda
= 2.2 microns. The data are consistent on the spatial scale probed by PTI both
with a binary system scenario (maximum magnitude difference of 2.7 +/- 0.5 mag
and smallest separation of 0.35 +/- 0.05 AU) and a standard luminous accretion
disk model (approx. accretion rate of 6e-5 Mo/yr) where the thermal emission
dominates the stellar scattering, and inconsistent with a single stellar
photosphere.Comment: 13 pages, 4 figures, accepted for publication in ApJ
Protein Feeds for the War Period
The shortage of high-protein feeds and protein supplements for livestock is becoming more acute every day. Supplies of animal protein are not large enough to meet present needs mainly because of the increased demand for them due to (1) greater use of protein feeds by livestock producers in order to provide more milk, meat, and eggs, and (2) the need for larger amounts of casein and other animal proteins, as well as certain vegetable proteins, in war industries. It has been estimated that the shortage of protein concentrates in the United States will exceed 1,810,000 tons for 1943.\u27 Because of this shortage it is very important to the war effort that every livestock producer-farmer, rancher, and livestock feeder-do everything within his power to use existing supplies efficiently and to produce more protein feeds. He can use them best by avoiding overfeeding and other waste of feed, culling out low-producing animals and selling them, and using methods approved by authorities to control diseases and maintain sanitation
The stability of the spectator, Dirac, and Salpeter equations for mesons
Mesons are made of quark-antiquark pairs held together by the strong force.
The one channel spectator, Dirac, and Salpeter equations can each be used to
model this pairing. We look at cases where the relativistic kernel of these
equations corresponds to a time-like vector exchange, a scalar exchange, or a
linear combination of the two. Since the model used in this paper describes
mesons which cannot decay physically, the equations must describe stable
states. We find that this requirement is not always satisfied, and give a
complete discussion of the conditions under which the various equations give
unphysical, unstable solutions
Nonperturbative dynamics of scalar field theories through the Feynman-Schwinger representation
In this paper we present a summary of results obtained for scalar field
theories using the Feynman-Schwinger (FSR) approach. Specifically, scalar QED
and chi^2phi theories are considered. The motivation behind the applications
discussed in this paper is to use the FSR method as a rigorous tool for testing
the quality of commonly used approximations in field theory. Exact calculations
in a quenched theory are presented for one-, two-, and three-body bound states.
Results obtained indicate that some of the commonly used approximations, such
as Bethe-Salpeter ladder summation for bound states and the rainbow summation
for one body problems, produce significantly different results from those
obtained from the FSR approach. We find that more accurate results can be
obtained using other, simpler, approximation schemes.Comment: 25 pags, 19 figures, prepared for the volume celebrating the 70th
birthday of Yuri Simono
- …