1,098 research outputs found

    Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores

    Get PDF
    We present SWAS observations of water vapor in two cold star-less clouds, B68 and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01) transition of o-H2O are reported for each source. Both molecular cores have been previously examined by detailed observations that have characterized the physical structure. Using these rather well defined physical properties and a Monte-Carlo radiation transfer model we have removed one of the largest uncertainties from the abundance calculation and set the lowest water abundance limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8} (relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low abundances confirm the general lack of ortho-water vapor in cold (T < 20 K) cores. Provided that the ortho/para ratio of water is not near zero, these limits are well below theoretical predictions and appear to support the suggestion that most of the water in dense low-mass cores is frozen onto the surfaces of cold dust grains.Comment: 12 pages, 3 figures, accepted by Astrophysical Journal Letter

    Hot Organic Molecules Toward a Young Low-Mass Star: A Look at Inner Disk Chemistry

    Full text link
    Spitzer Space Telescope spectra of the low mass young stellar object (YSO) IRS 46 (L_bol ~ 0.6 L_sun) in Ophiuchus reveal strong vibration-rotation absorption bands of gaseous C2H2, HCN, and CO2. This is the only source out of a sample of ~100 YSO's that shows these features and the first time they are seen in the spectrum of a solar-mass YSO. Analysis of the Spitzer data combined with Keck L- and M-band spectra gives excitation temperatures of > 350 K and abundances of 10(-6)-10(-5) with respect to H2, orders of magnitude higher than those found in cold clouds. In spite of this high abundance, the HCN J=4-3 line is barely detected with the James Clerk Maxwell Telescope, indicating a source diameter less than 13 AU. The (sub)millimeter continuum emission and the absence of scattered light in near-infrared images limits the mass and temperature of any remnant collapse envelope to less than 0.01 M_sun and 100 K, respectively. This excludes a hot-core type region as found in high-mass YSO's. The most plausible origin of this hot gas rich in organic molecules is in the inner (<6 AU radius) region of the disk around IRS 46, either the disk itself or a disk wind. A nearly edge-on 2-D disk model fits the spectral energy distribution (SED) and gives a column of dense warm gas along the line of sight that is consistent with the absorption data. These data illustrate the unique potential of high-resolution infrared spectroscopy to probe organic chemistry, gas temperatures and kinematics in the planet-forming zones close to a young star.Comment: 4 pages, 4 figures; To appear in Astrophysical Journal Letter

    A Survey for Low-mass Stars and Brown Dwarfs in the Upper-Scorpius OB Association

    Full text link
    The Upper-Scorpius association is the OB association nearest to the Sun (145 pc). Its young age (5 Myr) makes it an ideal place to search for low-mass stars and brown dwarfs, as these objects should be relatively bright. We have performed a photometric search for the low-mass members of the association, using the R, I, and Z filters. The completeness limit is I=18.5 and the saturation limit is I=13. We obtain 138 candidate members, covering nearly the entire M spectral type range. We find an excess of brown dwarf candidates over the number predicted by a Miller-Scalo Initial Mass Function. In addition, we have performed infrared imaging and low resolution optical spectroscopy of selected candidates. We find that the infrared observations confirm the spectral types obtained with the optical photometry. Furthermore, we find H_alpha in emission in 20 of the 22 objects observed spectroscopically. As H_alpha is an indicator of youth, we believe that these 20 objects may belong to the association. One of them, UScoCTIO 128 has a very strong and constant H_alpha line (equivalent width: -130 A), and its position in the color magnitude diagram suggests that it is a brown dwarf with mass equal to 0.02 msun. Confirmation of this and the other candidates will have to wait for higher resolution observations that can reveal spectroscopic mass indicators like Li I and gravity indicators, such as K I and the subordinate lines of Na I.Comment: 20 pages, 7 figures, 3 tables, accepted in the Astronomical Journa

    The Parallax and Proper Motion of RX J1856.5-3754 Revisited

    Get PDF
    RX J1856.5-3754, a bright soft X-ray source believed to be the nearest thermally emitting neutron star, has commanded and continues to command intense interest from X-ray missions. One of the main goals is to determine the radius of this neutron star. An integral part of the determination is an accurate parallax. Walter (2001) analyzed Hubble Space Telescope (HST) data and derived a parallax, pi=16.5+/-2.3 mas. Combining this distance with the angular radius derived from blackbody fits to observations of RX J1856.5-3754 with ROSAT, EUVE, HST, Pons et al. (2001) derived an observed radius ("radiation radius"), R_{infty}= 7 km. This value is smaller than the radii calculated from all proposed equations-of-state (EOS) of dense baryonic matter (Haensel 2001). Here, we have analyzed the same HST data and find pi=7+/-2 mas. We have verified our result using a number of different, independent techniques, and find the result to be robust. Adopting our parallax, the radius of RX J1856.5-3754 is R_{infty}=15+/-6 km. This radius falls squarely in the range of radii, 12--16 km, expected from calculations of neutron star structure for different equations of state. With additional HST observations, the parallax estimate can be improved to the point by which the inferred radius can constrain the choice of EOS.Comment: 23 pages, 5 figures. Minor changes/corrections since v1. Submitted to Ap

    Quiescent Dense Gas in Protostellar Clusters: the Ophiuchus A Core

    Full text link
    We present combined BIMA interferometer and IRAM 30 m Telescope data of N2H+ 1-0 line emission across the nearby dense, star forming core Ophiuchus A (Oph A) at high linear resolution (e.g., ~1000 AU). Six maxima of integrated line intensity are detected which we designate Oph A-N1 through N6. The N4 and N5 maxima are coincident with the starless continuum objects SM1 and SM2 respectively but the other maxima are not coincident with previously-identified objects. In contrast, relatively little N2H+ 1-0 emission is coincident with the starless object SM2 and the Class 0 protostar VLA 1623. The FWHM of the N2H+ 1-0 line, Delta V, varies by a factor of ~5 across Oph A. Values of Delta V < 0.3 km/s are found in 14 locations in Oph A, but only that associated with N6 is both well-defined spatially and larger than the beam size. Centroid velocities of the line, V_LSR, vary relatively little, having an rms of only \~0.17 km/s. Small-scale V_LSR gradients of <0.5 km/s over ~0.01 pc are found near SM1, SM1N, and SM2, but not N6. The low N2H+ abundances of SM2 or VLA 1623 relative to SM1, SM1N, or N6 may reflect relatively greater amounts of N2 adsorption onto dust grains in their colder and probably denser interiors. The low Delta V of N6, i.e., 0.193 km/s FWHM, is only marginally larger than the FWHM expected from thermal motions alone, suggesting turbulent motions in the Oph A core have been reduced dramatically at this location. The non-detection of N6 in previous thermal continuum maps suggests that interesting sites possibly related to star formation may be overlooked in such data.Comment: LaTex with 7 figures, produces 36 pages. Accepted for publication in ApJ. Typo related to Equation 3 fixed, caused derived values of N(N2H+) and X(N2H+) to be low by factors of ~40%. Conclusions of paper are unchange

    Optical Spectroscopy of the Surface Population of the rho Ophiuchi Molecular Cloud: The First Wave of Star Formation

    Full text link
    We present the results of optical spectroscopy of 139 stars obtained with the Hydra multi-object spectrograph. The objects extend over a 1.3 square degree area surrounding the main cloud of the rho Oph complex. The objects were selected from narrowband images to have H alpha in emission. Using the presence of strong H alpha emission, lithium absorption, location in the Hertzsprung-Russell diagram, or previously reported x-ray emission, we were able to identify 88 objects as young stars associated with the cloud. Strong H alpha emission was confirmed in 39 objects with line widths consistent with their origin in magnetospheric accretion columns. Two of the strongest emission-line objects are young, x-ray emitting brown dwarf candidates with M8 spectral types. Comparisons of the bolometric luminosities and effective temperatures with theoretical models suggest a medianage for this population of 2.1 Myr which is signifcantly older than the ages derived for objects in the cloud core. It appears that these stars formed contemporaneously with low mass stars in the Upper Scorpius subgroup, likely triggered by massive stars in the Upper-Centaurus subgroup.Comment: 35 pages of postscript which includes seven figures (some of which are multi-panel) and four postscript tables. Astronomical Journal (in press

    Ten-Micron Observations of Nearby Young Stars

    Get PDF
    (abridged) We present new 10-micron photometry of 21 nearby young stars obtained at the Palomar 5-meter and at the Keck I 10-meter telescopes as part of a program to search for dust in the habitable zone of young stars. Thirteen of the stars are in the F-K spectral type range ("solar analogs"), 4 have B or A spectral types, and 4 have spectral type M. We confirm existing IRAS 12-micron and ground-based 10-micron photometry for 10 of the stars, and present new insight into this spectral regime for the rest. Excess emission at 10 micron is not found in any of the young solar analogs, except for a possible 2.4-sigma detection in the G5V star HD 88638. The G2V star HD 107146, which does not display a 10-micron excess, is identified as a new Vega-like candidate, based on our 10-micron photospheric detection, combined with previously unidentified 60-micron and 100-micron IRAS excesses. Among the early-type stars, a 10-micron excess is detected only in HD 109573A (HR 4796A), confirming prior observations; among the M dwarfs, excesses are confirmed in AA Tau, CD -40 8434, and Hen 3-600A. A previously suggested N band excess in the M3 dwarf CD -33 7795 is shown to be consistent with photospheric emission.Comment: 40 pages, 4 figures, 5 tables. To appear in the January 1, 2004 issue of Ap

    The Evolution of Circumstellar Disks in Ophiuchus Binaries

    Get PDF
    Four Ophiuchus binaries, two Class I systems and two Class II systems, with separations of ~450-1100 AU, were observed with the Owens Valley Radio Observatory (OVRO) millimeter interferometer. In each system, the 3 mm continuum maps show dust emission at the location of the primary star, but no emission at the position of the secondary. This result is different from observations of less evolved Class 0 binaries, in which dust emission is detected from both sources. The nondetection of secondary disks is, however, similar to the dust distribution seen in wide Class II Taurus binaries. The combined OVRO results from the Ophiuchus and Taurus binaries suggest that secondary disk masses are significantly lower than primary disk masses by the Class II stage, with initial evidence that massive secondary disks are reduced by the Class I stage. Although some of the secondaries retain hot inner disk material, the early dissipation of massive outer disks may negatively impact planet formation around secondary stars. Masses for the circumprimary disks are within the range of masses measured for disks around single T Tauri stars and, in some cases, larger than the minimum mass solar nebula. More massive primary disks are predicted by several formation models and are broadly consistent with the observations. Combining the 3 mm data with previous 1.3 mm observations, the dust opacity power-law index for each primary disk is estimated. The opacity index values are all less than the scaling for interstellar dust, possibly indicating grain growth within the circumprimary disks

    Problem behavior and heart rate reactivity in adopted adolescents: Longitudinal and concurrent relations.

    Get PDF
    The present longitudinal study examined resting heart rate and heart rate variability and reactivity to a stressful gambling task in adopted adolescents with aggressive, delinquent, or internalizing behavior problems and adopted adolescents without behavior problems (total N=151). Early-onset delinquent adolescents showed heart rate hyporeactivity to the stress-eliciting gambling task compared to late-onset delinquent adolescents and adolescents without behavior problems. Heart rate, heart rate variability, and reactivity to stress were not related to environmental factors such as early-childhood parental sensitivity, parental socioeconomic status, or adoptee's health status at arrival. We conclude that the distinction between delinquency and aggression and between childhood-onset and adolescence-onset delinquency is important for the study of stress reactivity in adolescents. Copyright © 2008, Society for Research on Adolescence

    Tracing the Mass during Low-Mass Star Formation. II. Modelling the Submillimeter Emission from Pre-Protostellar Cores

    Get PDF
    We have modeled the emission from dust in pre-protostellar cores, including a self-consistent calculation of the temperature distribution for each input density distribution. Model density distributions include Bonnor-Ebert spheres and power laws. The Bonnor-Ebert spheres fit the data well for all three cores we have modeled. The dust temperatures decline to very low values (\Td \sim 7 K) in the centers of these cores, strongly affecting the dust emission. Compared to earlier models that assume constant dust temperatures, our models indicate higher central densities and smaller regions of relatively constant density. Indeed, for L1544, a power-law density distribution, similar to that of a singular, isothermal sphere, cannot be ruled out. For the three sources modeled herein, there seems to be a sequence of increasing central condensation, from L1512 to L1689B to L1544. The two denser cores, L1689B and L1544, have spectroscopic evidence for contraction, suggesting an evolutionary sequence for pre-protostellar cores.Comment: 22 pages, 9 figures, Ap. J. accepted, uses emulateapj5.st
    corecore