78 research outputs found
Towards Large-Scale Quantum Networks
The vision of a quantum internet is to fundamentally enhance Internet
technology by enabling quantum communication between any two points on Earth.
While the first realisations of small scale quantum networks are expected in
the near future, scaling such networks presents immense challenges to physics,
computer science and engineering. Here, we provide a gentle introduction to
quantum networking targeted at computer scientists, and survey the state of the
art. We proceed to discuss key challenges for computer science in order to make
such networks a reality.Comment: To be presented at the Sixth Annual ACM International Conference on
Nanoscale Computing and Communication, Dublin, Irelan
High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester
Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)
Macrocyclic Ī²-Sheet Peptides That Inhibit the Aggregation of a Tau-Protein-Derived Hexapeptide
This paper describes studies of a series of macrocyclic Ī²-sheet peptides 1 that inhibit the aggregation of a tau-protein-derived peptide. The macrocyclic Ī²-sheet peptides comprise a pentapeptide "upper" strand, two Ī“-linked ornithine turn units, and a "lower" strand comprising two additional residues and the Ī²-sheet peptidomimetic template "Hao". The tau-derived peptide Ac-VQIVYK-NH(2) (AcPHF6) aggregates in solution through Ī²-sheet interactions to form straight and twisted filaments similar to those formed by tau protein in Alzheimer's neurofibrillary tangles. Macrocycles 1 containing the pentapeptide VQIVY in the "upper" strand delay and suppress the onset of aggregation of the AcPHF6 peptide. Inhibition is particularly pronounced in macrocycles 1a, 1d, and 1f, in which the two residues in the "lower" strand provide a pattern of hydrophobicity and hydrophilicity that matches that of the pentapeptide "upper" strand. Inhibition varies strongly with the concentration of these macrocycles, suggesting that it is cooperative. Macrocycle 1b containing the pentapeptide QIVYK shows little inhibition, suggesting the possibility of a preferred direction of growth of AcPHF6 Ī²-sheets. On the basis of these studies, a model is proposed in which the AcPHF6 amyloid grows as a layered pair of Ī²-sheets and in which growth is blocked by a pair of macrocycles that cap the growing paired hydrogen-bonding edges. This model provides a provocative and appealing target for future inhibitor design
- ā¦