18 research outputs found

    Disturbed Expression of Splicing Factors in Renal Cancer Affects Alternative Splicing of Apoptosis Regulators, Oncogenes, and Tumor Suppressors

    Get PDF
    BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer. One of the processes disturbed in this cancer type is alternative splicing, although phenomena underlying these disturbances remain unknown. Alternative splicing consists of selective removal of introns and joining of residual exons of the primary transcript, to produce mRNA molecules of different sequence. Splicing aberrations may lead to tumoral transformation due to synthesis of impaired splice variants with oncogenic potential. In this paper we hypothesized that disturbed alternative splicing in ccRCC may result from improper expression of splicing factors, mediators of splicing reactions. METHODOLOGY/PRINCIPAL FINDINGS: Using real-time PCR and Western-blot analysis we analyzed expression of seven splicing factors belonging to SR proteins family (SF2/ASF, SC35, SRp20, SRp75, SRp40, SRp55 and 9G8), and one non-SR factor, hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1) in 38 pairs of tumor-control ccRCC samples. Moreover, we analyzed splicing patterns of five genes involved in carcinogenesis and partially regulated by analyzed splicing factors: RON, CEACAM1, Rac1, Caspase-9, and GLI1. CONCLUSIONS/SIGNIFICANCE: We found that the mRNA expression of splicing factors was disturbed in tumors when compared to paired controls, similarly as levels of SF2/ASF and hnRNP A1 proteins. The correlation coefficients between expression levels of specific splicing factors were increased in tumor samples. Moreover, alternative splicing of five analyzed genes was also disturbed in ccRCC samples and splicing pattern of two of them, Caspase-9 and CEACAM1 correlated with expression of SF2/ASF in tumors. We conclude that disturbed expression of splicing factors in ccRCC may possibly lead to impaired alternative splicing of genes regulating tumor growth and this way contribute to the process of carcinogenesis

    New RNA-protein crosslinks in domains 1 and 2 of E.coli

    No full text

    Multiple crosslinks of proteins S7, S9, S13 to domains 3 and 4 of 16S RNA in the 30S particle.

    No full text
    Functionally active 70S ribosomes containing 4-thiouracil in place of uracil (substitution level 2%) were prepared by an in vivo substitution method. RNA-protein crosslinks were introduced by 366 nm photoactivation of 4-thiouracil in the purified 30S subunits. Seven single stranded M13 probes containing rDNA inserts complementary to domains 3 and 4 of 16S RNA were constructed. These inserts approximately 100 nucleotides long starting at nucleotide 868 and ending at the 3' OH terminus were used to select contiguous RNA sections. The proteins covalently linked to each selected RNA section were identified by 2D gel electrophoresis. Proteins S7, S9, S13 were shown to be efficiently crosslinked to multiple sites belonging to both domains

    The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A.

    No full text
    Exons 6A and 6B of the chicken beta-tropomyosin gene are mutually exclusive and selected in a tissue-specific manner. Exon 6A is present in non-muscle and smooth muscle cells, while exon 6B is present in skeletal muscle cells. In this study we have investigated the mechanism underlying exon 6A recognition in non-muscle cells. Previous reports have identified a pyrimidine-rich intronic enhancer sequence (S4) downstream of exon 6A as essential for exon 6A 5'-splice site recognition. We show here that preincubation of HeLa cell extracts with an excess of RNA containing this sequence specifically inhibits exon 6A recognition by the splicing machinery. Splicing inhibition by an excess of this RNA can be rescued by addition of the SR protein ASF/SF2, but not by the SR proteins SC35 or 9G8. ASF/SF2 stimulates exon 6A splicing through specific interaction with the enhancer sequence. Surprisingly, SC35 behaves as an inhibitor of exon 6A splicing, since addition to HeLa nuclear extracts of increasing amounts of the SC35 protein completely abolish the stimulatory effect of ASF/SF2 on exon 6A splicing. We conclude that exon 6A recognition in vitro depends on the ratio of the ASF/SF2 to SC35 SR proteins. Taken together our results suggest that variations in the level or activity of these proteins could contribute to the tissue-specific choice of beta-tropomyosin exon 6A. In support of this we show that SR proteins isolated from skeletal muscle tissues are less efficient for exon 6A stimulation than SR proteins isolated from HeLa cells
    corecore