42 research outputs found
Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington's disease models
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD
Huntingtin CAG expansion impairs germ layer patterning in synthetic human 2D gastruloids through polarity defects
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFβ signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFβ receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids
Recommended from our members
WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids
Self-organization of discrete fates in human gastruloids is mediated by a hierarchy of signaling pathways. How these pathways are integrated in time, and whether cells maintain a memory of their signaling history remains obscure. Here, we dissect the temporal integration of two key pathways, WNT and ACTIVIN, which along with BMP control gastrulation. CRISPR/Cas9-engineered live reporters of SMAD1, 2 and 4 demonstrate that in contrast to the stable signaling by SMAD1, signaling and transcriptional response by SMAD2 is transient, and while necessary for pluripotency, it is insufficient for differentiation. Pre-exposure to WNT, however, endows cells with the competence to respond to graded levels of ACTIVIN, which induces differentiation without changing SMAD2 dynamics. This cellular memory of WNT signaling is necessary for ACTIVIN morphogen activity. A re-evaluation of the evidence gathered over decades in model systems, re-enforces our conclusions and points to an evolutionarily conserved mechanism
Foam control in fermentation bioprocess: from simple aeration tests to bioreactor.
In this article, we describe the development of a simple laboratory test for the effective screening of foam control agents on a selected fermentation system, the mass production of Yarrowia lipolytica. Aeration testing is based on sparging air in the foaming medium allowing partial reproduction of the gas-liquid hydrodynamic encountered in bioreactors. "Dynamic sparge test," for which measurements are made during foam formation, was used to compare the capacity of three antifoams, based on different technologies, to control the foam produced in the fermentation broth. The selected foam control agents were: (1) an organic antifoam (TEGO AFKS911), (2) a silicone-based emulsion containing in situ treated silica (DC-1520) and (3) a silicone/ organic blend silica-free formulation. The testing results demonstrated dramatic differences among them and showed that the capacity of TEGO AFKS911 and DC-1520 to control the foam generated in the fermentation broth decreases as a function of fermentation time. This occurred to a much lesser extent for the silicone/ organic blend formulation. These results were correlated with the change of the foam nature and the increase of foam stability of the fermentation broth with culture time. The increase in protein content as a function of growth time was correlated with an increase in foam stability and antifoam consumption. A "synthetic fermentation broth" was also developed, by adding both proteins and microorganism to the culture medium. This allowed us to mimic the fermentation broth, shown by the similar antifoams behaviour, and is therefore a simple methodology useful for the selection of appropriate antifoams
A balance between secreted inhibitors and edge sensing controls gastruloid self-organization
The earliest aspects of human embryogenesis remain mysterious. To model patterning events in the human embryo, we used colonies of human embryonic stem cells (hESCs) grown on micropatterned substrate and differentiated with BMP4. These gastruloids recapitulate the embryonic arrangement of the mammalian germ layers and provide an assay to assess the structural and signaling mechanisms patterning the human gastrula. Structurally, high-density hESCs localize their receptors to transforming growth factor β at their lateral side in the center of the colony while maintaining apical localization of receptors at the edge. This relocalization insulates cells at the center from apically applied ligands while maintaining response to basally presented ones. In addition, BMP4 directly induces the expression of its own inhibitor, NOGGIN, generating a reaction-diffusion mechanism that underlies patterning. We develop a quantitative model that integrates edge sensing and inhibitors to predict human fate positioning in gastruloids and, potentially, the human embryo
Self-organization of human embryonic stem cells on micropatterns
Fate allocation in the gastrulating embryo is spatially organized as cells differentiate into specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. Although embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, methods that generate embryoid bodies or organoids do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach in which human embryonic stem cells are confined to disk-shaped, submillimeter colonies. After 42 h of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 d; it uses commercial microfabricated slides (from CYTOO), human laminin-521 (LN-521) as extracellular matrix coating, and either conditioned or chemically defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation
A 3D model of a human epiblast reveals BMP4-driven symmetry breaking
Breaking the anterior-posterior symmetry in mammals occurs at gastrulation. Much of the signalling network underlying this process has been elucidated in the mouse; however, there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro three-dimensional model of a human epiblast whose size, cell polarity and gene expression are similar to a day 10 human epiblast. A defined dose of BMP4 spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial-to-mesenchymal transition. We show that WNT signalling and its inhibitor DKK1 play key roles in this process downstream of BMP4. Our work demonstrates that a model human epiblast can break axial symmetry despite the absence of asymmetry in the initial signal and of extra-embryonic tissues or maternal cues. Our three-dimensional model is an assay for the molecular events underlying human axial symmetry breaking
Synthetic strategies to obtain new optically pure Ru(II) complexes for the study of stereospecific interactions with DNA
info:eu-repo/semantics/nonPublishe