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MOTIVATION Organoids are promising tools for modeling complex disease phenotypes. However, they
often lack the reproducibility and scalability that would allow their use in high-throughput screening assays.
We therefore sought to develop a method of using reproducible and scalable micropatterned neural orga-
noids for drug screening, to develop associated deep-learning analysis methods for efficiently classifying
wild-type and disease organoids, and to carry out a drug screen to identify targets that can rescue devel-
opmental phenotypes in organoids derived from stem cells that carry mutations for Huntington’s disease.
SUMMARY
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful ba-
sis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved
technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-
throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-
driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural orga-
noids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with
extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects.
We applied our approach to Huntington’s disease (HD) and discovered that bromodomain inhibitors revert
complex phenotypes induced by the HDmutation. This work demonstrates the power of combining machine
learning with phenotypic drug screening and its successful application to reveal a potentially new druggable
target for HD.
INTRODUCTION

The neurological space is in desperate need for new drugs, but

clinical successes have been extremely low. For rare neurolog-

ical disorders, only 5% of all drugs entering clinical trials are esti-

mated to ultimately reach Food and Drug Administration

approval in the United States (Wong et al., 2019). The failure to

efficiently provide first-in-class medicines has been linked to

the target-based methodology that has fueled most drug-dis-

covery programs for decades (Swinney and Anthony, 2011).

This approach starts from a defined molecular target that is hy-

pothesized to be linked to the etiology of the disease. A radically

different methodology, the phenotypic approach, proposes to
Cell Repor
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use cell-based phenotypic readouts and does not rely on prior

knowledge of the disease pathogenesis. Thus, it allows for an

unbiased identification of new mechanisms of action and has

great potential for delivering new first-in-class drugs, especially

for poorly understood neurological disorders (Moffat et al.,

2017; Swinney, 2013; Zheng et al., 2013).

With the quick development of organoid-based technologies,

we are now able to generate powerful pre-clinical models of hu-

man diseases for phenotypic high-throughput screening (HTS).

While still lacking key physiological features such as an immune

system, blood-brain barrier, or aging hallmarks, these models

incorporate the complex interplay of signaling and morphogen-

esis in a multi-fate, multi-tissue environment in a human
ts Methods 2, 100297, September 19, 2022 ª 2022 The Authors. 1
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background and thus reproduce the molecular and cellular de-

fects induced by mutant Huntingtin (HTT) linked to Huntington’s

disease (HD) more accurately. They therefore generate better

models of human diseases, with the potential of discovering

newdrugs and newmechanisms of action for diseaseswith large

unmet needs (Akkerman and Defize, 2017; Dutta et al., 2017;

Lancaster and Huch, 2019; Ranga et al., 2014; Sirenko et al.,

2019). However, while neural organoids have been used to

mimic aspects of a number of diseases, typical three-dimen-

sional (3D) organoids display low standardization and scalability,

preventing their integration into HTS campaigns. Overcoming

these limitations is an area of intense research. One convenient

solution is to rely on neural spheroids (Sirenko et al., 2019), which

are more standardized but do not recapitulate the radial organi-

zation of the cortex. Another solution, technically demanding, is

to introduce automatization and tissue-clearing methodologies

(Renner et al., 2020). It is thus imperative to keep devising new

methods that allow for a large number of organoids to be gener-

ated simultaneously with high reproducibility as well as to

develop new computational tools for the detection of potentially

subtle disease phenotypes that have to be extracted despite the

inherent variability of multi-cellular biological processes.

Here, we report the design of a generic phenotypic screening

methodology at the organoid level and the discovery of new

modulators of phenotypes of HD, a fatal dominant autosomal

neurodegenerative disease that is caused by an increase in the

number of CAG repeats, which expands a polyglutamine (polyQ)

tract in the HTT protein (Ross and Tabrizi, 2011). While being a

degenerative disease, HD has recently been shown to alter hu-

man neurodevelopment in human fetal samples (Barnat et al.,

2020), suggesting that early human organoid models that repro-

duce aberrant signaling and morphogenesis in HD constitute a

promising approach for discovering new mechanisms that are

also relevant at later stages of the disease. Here, we leveraged

the recently devised ‘‘neuruloids’’ that use micropattern-based

differentiation to create organoids mimicking the ectodermal

compartment during human neurulation (Haremaki et al.,

2019), with the possibility for easy upscaling while retaining

excellent reproducibility. We then performed a drug-discovery

screen aimed at reversing a complex phenotype that we have

previously reported for HD in the neuruloids, using a previously

characterized isogenic series of human embryonic stem cell

(hESC) lines with graded increases in CAG lengths (Ruzo et al.,

2018). Finally, we developed a deep-learning computational
Figure 1. High-throughput screening strategy and validation

(A) Schematic illustration of the high-throughput screening (HTS) strategy. Organ

compounds and then analyzed to establish whether they revert the phenotype to

(B) A deep neural network can be used as an efficient classifier to distinguish be

(C) Example wells of a 96-well plate for WT and HD organoids (diameter 700 m

phalloidin.

(D) Example WT and HD images and averaged images over all control organoids

(E) Classification accuracy of the neural network trained on control WT and HD ima

used during training (individual images: n = 1,464, nWT = 700, nHD = 764; averag

(F) Comparison with other discriminationmethods in terms of distance betweenW

network approach compared with image clustering using UMAP or feature segme

per well, all n = 29).

(G and H) Validation of the neural network approach for identifying phenotypic rev

11, nKO+OE = 33). The neural network correctly identifies the rescued HTT�/� + H
pipeline to analyze the screening results and to quantify, for

each compound, its efficacy at reversing the disease phenotype

back to normal as well as its adverse effects. Using this combi-

nation of tools, we discovered that specific bromodomain inhib-

itors can efficiently revert HD phenotypes to wild type (WT) and

can also alleviate neuronal susceptibility to apoptosis in human

HD neurons in vitro, highlighting a potential new druggable target

for HD that should be further evaluated.

RESULTS

Development and validation of a micropattern-based
organoid screening platform
We and others have recently reported the generation of organo-

ids that reproduce the entire ectodermal compartment of the hu-

man embryo during its fourth week of development (Britton et al.,

2019; Haremaki et al., 2019). These self-organized structures,

called neuruloids, reproducibly and accurately generate all four

ectodermal lineages (neural, neural crest, placode, and

epidermis) in the correct layered 3D organization as observed

in vivo, based on a minimal protocol. Moreover, using an

isogenic set of cell lines carrying different mutations associated

with HD, we have demonstrated that HD neuruloids exhibit a

complex, stereotypical phenotype. We hypothesized that these

findings could be scaled up for usage as a drug-screening appli-

cation which would reveal drugs that reverse the disease state

back to the normal state (Figure 1A). Our motivation is to use

these early developmental organoids to discover molecules

that can rescue the deleterious impact of the HD mutation in

the context of a complex neural tissue. Successful hit molecules

will then be tested in alternative HD-specific secondary assays,

with the aim of discovering molecules rescuing a breadth of the

pleiotropic deleterious functions, as yet mostly unknown, that

are associated with mutant HTT. Such molecules will rescue

deleterious functions of mutant HTT and might eventually lead

to the development of drugs for preventing disease onset.

Precise separation between negative and positive controls is a

requirement for HTS platforms in order to minimize the rate of

false positives and false negatives. This is commonly measured

by the Z0 factor, a quantity smaller than 1 that considers the sep-

aration between controls as well as the relative spread of the

data (Zhang et al., 1999). The use of organoids in HTS is limited

by inherent noise in multi-cellular processes, but first and fore-

most by the current high inter-organoid structural variability.
oids carrying the mutation for Huntington’s disease (HD) are treated with drug

the wild type (WT).

tween the phenotypes and to determine that degree of reversal.

m) stained for the early neural progenitor marker PAX6 and the actin marker

(diameter 700 mm).

ges. The accuracy is determined by validating on a set of images that were not

ed per well: n = 58, nWT = 29, nHD = 29).

T and disease and the resulting Z0 factors show superior accuracy of the neural

ntation using random forest classification (each data point represents average

ersal using an HTT knockout and overexpression (OE) (n = 54, nWT = 10, nKO =

TT-OE as WT.
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We hypothesized that the combination of the neuruloid, a highly

reproducible micropattern-based organoid, and the image clas-

sification power of deep neural networks (Figure 1B) would allow

a strict classification of phenotypes despite the noise resulting

from underlying biological processes related to multi-cellular

system morphogenesis, and would thus allow us to meet the

stringent statistical requirements associated with HTS. In our

case, this refers to a strict separation between WT and HD neu-

ruloids, and thus a high Z0 score.
To scale up organoid production, neuruloids were grown on

700-mm-diameter, disk-shaped micropatterns at the bottom of

96-well plates, resulting in approximately 35 neuruloids per

well, 25 of which were not cut by the edge of the well and were

thus suitable for downstream analysis. While the original pub-

lished protocol used 500 mm diameter, we chose commercially

available 700-mm-diameter micropatterns to perform the primary

screen before validating hits in the originally reported 500-mm-

diameter setting. For the larger 700-mm-diameter patterns, the

neuruloids showed a slightly less compact neuroepithelial core

compared with our previous results with 500-mm patterns; how-

ever, this did not affect reproducibility, the HD phenotype, or our

ability to differentiate between WT and HD neuruloids. Immuno-

fluorescence for the neural marker PAX6 and the actin marker

phalloidin served as a readout for both fate patterning and struc-

tural organization (Figure 1C). Consistent with our previous

report, we observed a clear phenotype of the HD neuruloids

compared with WT with high reproducibility, in particular an

expansion and change of shape of the PAX6+ neural core, high-

lighted in individual neuruloids as well as in the average of chan-

nel intensity between all neuruloids of a similar well (Figures 1D

and S1).We next askedwhether we could computationally sepa-

rate the two phenotypes with a low enough false detection rate

for usage in a drug screen. Leveraging the power of deep convo-

lutional neural networks (CNNs) for image classification tasks, in

particular their success at extracting and combining an optimal

set of image features, we trained a CNN for recognizing immuno-

fluorescent images ofWT and HD neuruloids (Figures 1B and S1;

STAR Methods). This approach led to a near-perfect separation

of WT and HD phenotypes at the level of individual neuruloids as

well as for the average score per well (Figure 1E). To quantita-

tively evaluate the performance of theCNN-based discrimination

approach in the context of HTS, we calculated the correspond-

ing Z0 factor and compared it with other machine-learning tech-

niques (Figure 1F). A general consensus is that a high-quality

screen has 0.5 < Z0 < 1, while Z0 < 0 is unacceptable (Zhang

et al., 1999). Strikingly, our CNN approach provided an excellent

distance between positive and negative control, resulting in a Z0

factor close to the optimal value of 1, thus representing a state-

of-the-art screening platform. Conversely, alternative classifica-

tion approaches (Figure 1F), e.g., uniform manifold approxima-

tion and projection (UMAP; Becht et al., 2019) clustering of the

raw images or feature segmentation using Ilastik (Berg et al.,

2019), a random forest classifier, resulted in a Z0 factor below
0, rendering the approach unusable for screening.

Ultimately, this tool should not only recognize different pheno-

types but also quantify biological rescue. We therefore took

advantage of the previously reported strong phenotype

observed in neuruloids with a knockout (KO) of the Huntingtin
4 Cell Reports Methods 2, 100297, September 19, 2022
gene, HTT�/� (Haremaki et al., 2019), to design a proof-of-

concept rescue experiment where WT Huntingtin protein (HTT)

was overexpressed in the HTT�/� background. As previously re-

ported, the HTT�/� neuruloids showed an enlarged PAX6 center

compared with WT (Figure 1G). Moreover, the PAX6+ domain of

HTT�/� neuruloids was not organized around a closed central

cavity, as highlighted by N-cadherin and phalloidin stains.

Constitutive expression of WT HTT in the HTT�/� background

led to a clear rescue of these defects (Figure 1G). We first trained

our classifier to distinguish between WT and HTT�/� neuruloids.

As expected, when new images were presented to the network,

WT neuruloids had a probability of belonging to the WT class

(prob. WT) close to 1, while HTT�/� neuruloids had prob. WT

close to 0 (Figure 1H). This demonstrates successful training of

the network. When we used the images of theHTT�/� neuruloids

with constitutive expression of WT HTT, the probability of

belonging to the WT class reverted back to 1, demonstrating a

rescue of the HTT�/� phenotype toward the WT (Figure 1H). In

conclusion, we have established a tool that not only can distin-

guish WT and mutant phenotypes with the highest accuracy

but also can be used to quantify phenotypic rescue.

Determining adverse effects of compounds
We next asked whether we could determine the potential

adverse effects of compounds on the neuruloids (Figure 2A).

These adverse effects would globally encompass potential com-

pound toxicity, but also off-target effects which would affect

neuruloid disease phenotypes that are not in the direction of

the WT ‘‘rescued’’ domain. Obtaining an efficient measure of

adverse effects simultaneously with the degree of rescue would

be highly advantageous in ranking therapeutic candidates. How-

ever, there are many different ways in which compounds could

adversely affect a neuruloid, not all of which are known a priori.

Therefore, it is not possible to train a classifier for this task. In

addition, although neural network classifiers perform well for

in-class data, they are known to be inaccurate for data belonging

to classes to which it has not been exposed in the training phase.

In order not to bias our analysis to pre-defined classes, we thus

chose to measure adverse effects using unsupervised learning

based on convolutional autoencoders (Figure 2B). These neural

networks extract the most important features of the data by

compressing images unbiasedly to a vector of defined length,

the latent vector (Figure 2B). The latent vector can then be

used as a representation of a phenotypic space, in which dis-

tances from control neuruloids can be used to determine the

adverse effects of a compound (Figure 2C): the distance be-

tweenWT and HD neuruloids is interpreted as the disease direc-

tion along which the therapeutic rescue will happen, while the

orthogonal distance is interpreted as a measure of adverse ef-

fects. To test the accuracy of this approach, we performed a pilot

experiment applying compounds with known toxic effects

to the HD organoids at different concentrations and quantita-

tively compared this value with 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), a conventional colorimetric

assay for cytotoxicity. As expected, we found control WT and

HD neuruloids to be well separated into two different clusters

in the phenotypic space (Figure 2D, left). After computationally

removing the disease direction defined by the center of the WT
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Figure 2. Strategy for determining adverse effect and phenotypic space

(A) Schematic illustration of the method for quantifying the adverse effect of a compound.

(B) Overview of the autoencoder architecture used for encoding organoid data into a latent vector.

(C) Illustration of the phenotypic space spanned by the latent vectors of the autoencoder.

(D) adverse effect estimation procedure and phenotypic space of a screen with 1,065 compounds (each data point is average of one well; n = 1,257, nWT = 96,

nHD = 96, nHD+compound = 1,065).

(E) Comparison of adverse effect scores for different drugs and varying concentration obtained by the method described here and the conventional MTT assay

shows high accuracy of our method (high scores correspond to low adverse effect, error bars indicate standard deviation over triplicates).

(F) Example phalloidin stains for the drugs and concentrations shown in (E). Panels missing are associated with high toxic compound concentrations that resulted

in cell death and no structure to be imaged. Micropattern diameter, 700 mm.
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and HD clusters, we were able to measure the adverse effects of

compounds as the distance from the central cluster in the space

defined by the remaining dimensions (Figure 2D, center and

right). Since this distance is a distance to a distribution of control

neuruloids, we used the Mahalanobis distance (Mahalanobis,

1936), which takes into account that the reference control distri-

bution may not be uniformly distributed in the latent space, and

that therefore distances should be rescaled by the variance of

the control distribution in each dimension. We found that the
dimensionality of the latent space did not have a significant ef-

fect and used a fixed latent space of dimension of 64

(Figures S2A–S2D). To compare the results from the autoen-

coder quantitatively with the MTT assay, we defined a distance

of more than three times of the average distance of control neu-

ruloids as toxic. Distances were then scaled to lie between 0 and

1 and, for each well, compared with the light absorption of the

colored MTT solution. A comparison between this method and

the MTT assay for toxicity showed very good agreement
Cell Reports Methods 2, 100297, September 19, 2022 5
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Figure 3. Screen for compounds that rescue the HD phenotype

(A) Phenotypic rescue and adverse effect scores for screen on the bioactive compounds library. Each data point represents the average score per well. Hit

compounds are identified as high rescue (>0.95) and low adverse effect (<3) (n = 1,481, nWT = 96, nHD = 96, nHD+compound = 1,065, nadditional HD control = 224).

(B) Phenotypic space used for estimating the adverse effect for compounds.

(C) Control wells from 96-well compound plates show no substructure in the latent space, confirming high reproducibility across plates (each data point is average

of one well; n = 224, nper plate = 16, nplates = 14).

(D and E) Phenotypic rescue (D) and adverse effect (E) for the 14 individual 96-well plates.

(F) Example images and details for hit compounds.

(G) Dose response for rescue and adverse effect for the hit compound bromosporine.

(H) Example images for the quantification of the dose response in (G).

All micropattern diameters, 700 mm.
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(Figure 2E; example images shown in Figure 2F). We therefore

conclude that our method can precisely measure phenotypic

rescue as well as the adverse effects of a given compound.

Small-molecule screen identifies compounds that revert
neuruloid phenotype of Huntington’s disease
Our methodology allowed us to perform a forward screen with

the aim of discovering compounds that can revert the HD neuru-

loid phenotype. To obtain unbiased coverage of a large number

of different mechanisms of action, we used a structurally diverse

set of 1,065 bioactive compounds at 10 mM. The results of the

screen are presented in the rescue-adverse effect space in Fig-

ure 3A. The phenotypic space, which was used to estimate the

adverse effect of compounds, is shown in Figure 3B. The pheno-

typic space for untreated control wells of all 14 compound plates

demonstrating excellent reproducibility across plates is shown in

Figure 3C, and rescue and adverse effect resolved per screening

plate is presented in Figures 3D and 3E. Quality control for the

screen revealed extremely low variability in the classification of

the control plates (Figure S2E) and untreated control wells in

each assay plate (Figure S2F).We defined hits as more than
6 Cell Reports Methods 2, 100297, September 19, 2022
95% rescue and less than three times the mean adverse effect

distance of untreated control wells. Our data show that five hit

compounds could revert the phenotype back to WT without pre-

senting adverse effects to the tissue (see STAR Methods for hit

description). Example images for the action of each of these

compounds are shown in Figure 3F.

Interestingly, the hit list contains bromosporine (hit #1 in Fig-

ure 3F), a broad-spectrum inhibitor for acetyl-lysine reader bro-

modomains (BRDs). Since transcriptional and epigenetic alter-

ations have been extensively documented in HD (Bassi et al.,

2017; Glajch and Sadri-Vakili, 2015; Sharma and Taliyan, 2015;

Zuccato et al., 2010) but bromodomains have not previously

been linked to HD pathologies, we chose to further investigate

BRD inhibitors. We determined the half-maximal effective con-

centration (EC50) of bromosporine to be 118.8 nM and the half-

maximal adverse effect score on the HD neuruloids as

760.7 nM (Figures 3G and 3H). There is therefore almost an order

of magnitude in concentration separating efficacy and adverse

effect. Moreover, when the adverse effect was quantified on

the WT neuruloids, we found the half-maximal value to be

1.1 mM. Therefore, the effect of bromosporine at submicromolar
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Figure 4. Screen of bromodomain inhibitors and additional validation assays

(A) Target, rescue, and adverse effect for specific bromodomain inhibitors.

(B) Dose response for rescue and adverse effect of several bromodomain inhibitors (associated z-AUC values are shown in Figure S4D).

(C) Validation of efficacy of bromosporine and BI-7273 in 500-mm-diameter micropatterns.

(D) Rescue efficiency determined using individual channels.

(E) Rescue efficiency determined using a combination of channels (n = 350).

(F) Phenotypic space obtained from the latent vectors of an autoencoder confirms phenotypic rescue by compounds as quantified in (E) (n = 435).

(G and H) Validation in cortical neurons shows that BRD inhibitors rescue the effect of BDNF removal in HD neurons, with two concentrations tested per

compound, 1 mM (blue) and 5 mM (red). Data points are individual fields of view collected in multiple wells; n = 185. p values were calculated using the two-tailed

Mann-Whitney U test (Benjamini-Hochberg corrected); n.s. (not significant), p > 0.05; ***p < 0.0005. Scale bar, 50 mm.
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concentrations is specific to the CAG expansion, as it shows ef-

ficacy on HD neuruloids while not affecting WT neuruloids.

Because bromosporine is a broad-spectrum inhibitor, with re-

ported half-maximal inhibitory concentrations (IC50) of 0.41 mM,

0.29 mM, 0.122 mM, and 0.017 mM for BRD2, BRD4, BRD9, and

CECR2, respectively, we then asked whether we could identify

which target within this panel was responsible for the rescue.

We used a chemogenic approach, taking advantage of the rela-

tively large number of bromodomain inhibitors that were recently
developed. Our panel consisted of 19 small-molecule inhibitors

of BRDs, which we assayed at 10 mM for rescue of the HD neu-

ruloids. The results of this BRD-inhibitor screen resulted in the

identification of BI-7273, a specific BRD7/9 inhibitor, as the

only inhibitor reversing the HDphenotypewith low adverse effect

at 10 mM (Figure 4A). Since BRD9 is the common target between

our primary hit, bromosporine, and BI-7273, we then tested

whether other BRD9-specific inhibitors could rescue HD neuru-

loids with low adverse effect for a range of concentrations. In
Cell Reports Methods 2, 100297, September 19, 2022 7
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total, we found that five BRD9 inhibitors—bromosporine, BI-

7273, BI-9564, dBRD9, and I-BRD9—all showed submicromolar

EC50 associated with low adverse effect (Figure 4B). This raises

the interesting hypothesis that BRD9 is the relevant target in the

reported rescuing effects.

Bromodomain inhibitors rescue HD phenotypes in
multiple assays
Finally, we sought to fully characterize the rescuing properties of

bromodomain inhibitors in the HD neuruloids, as well as in sec-

ondary assays. We chose to focus on the broad inhibitor bromo-

sporine as well as the more specific BRD9 inhibitor BI-7273. We

first performed rescue experiments using our previously pub-

lished neuruloid protocol on 500-mm-diameter micropatterns.

We chose four markers that were shown to reveal the main

phenotypic signature of HD neuruloids: collagen IV, PAX6, the

neural crest marker SOX10, and phalloidin. We also included

an additional HD cell line carrying a 72-length CAG repeat.

Immunofluorescence images were analyzed using a classifier

and autoencoder as described above. We found that both drugs

rescued the 56CAG phenotype back to WT, confirming our

screening results. Moreover, both drugs had a similar rescue ef-

fect on the 72CAG lines. Analyzing the individual contributions of

the channels to the rescue, we found that while all individual

channels by themselves show some degree of rescue (except

for collagen IV), they also display greater variability in the rescue

score. This is not unexpected, since we have previously found

that the HD phenotype consists of subtle combinations of ef-

fects, such as the spatial expression of markers relative to

each other. Consistently, training a neural network on WT and

56CAG lines using PAX6, phalloidin, and DAPI gives a better

separation betweenWT andHDand shows that the drugs rescue

both HD lines (Figures 4C–4E). The addition of collagen IV to

these channels leads to a similar result (Figures S3C–S3E). Simi-

larly, using the phenotypic space of the neuruloids obtained by

an autoencoder, we find that this also indicates a complete

rescue of both 56CAG and 72CAG phenotypes (Figure 4F).

Rescue is also indicated by more conventional analysis of indi-

vidual features such as the radius of the central PAX6 area

(Figure S3F).

Currently, the most prominent strategy for HD therapeutics is

based on reducing total or mutant HTT levels (Leavitt et al., 2020;

Li et al., 2019; Marxreiter et al., 2020; Shannon, 2020; Tabrizi

et al., 2019). To investigate the mechanism of action by which

BRD inhibitors rescue the HD neuruloids, we asked whether

they reduced the levels of HTT protein. Interestingly, we found

that only bromosporine reduced HTT levels, but at higher con-

centrations than the EC50 measured on HD neuruloids (Fig-

ure S4). Therefore, the mechanism of action of iBRDs is not

based on the reduction of HTT levels.

Finally, we asked whether iBRDs could show a positive effect

in assays that more directly mimic neurodegeneration in HD. We

thus turned to the susceptibility to apoptosis that can be

measured in HD neurons upon brain-derived neurotrophic factor

(BDNF) removal (Mattis et al., 2015). We differentiated 20CAG

and 72CAG hESC lines toward cortical neurons for 45 days

(Shi et al., 2012). BDNF was removed from WT and HD neuron

culture media for the following 7 days. As previously reported,
8 Cell Reports Methods 2, 100297, September 19, 2022
neurons grown from HD cells showed upregulation of apoptosis

markers as measured by the TUNEL assay, in contrast to 20CAG

neurons (Mattis et al., 2015). Strikingly, treatment with the BRD

inhibitors bromosporine, I-BRD9, and BI9564 showed significant

and in some cases complete reduction of apoptosis levels

(Figures 4G and 4H), with no effect on MAP2+ projection length

(Figure S4C). Interestingly, BI-7273 had no activity in this assay.

Importantly, these results translate our findings from a develop-

mental context to a paradigm of neurodegeneration and

strengthen our findings that iBRDs represent a promising class

of molecules that rescue a range of HD phenotypes in vitro,

and justify further work aimed at exploring the potential of

BRDs as new targets for HD.

DISCUSSION

This study lays the groundwork for combining deep neural

network and bioengineered human microtissues to carry out

drug screens on neural organoids. This is achieved by the com-

bination of a highly reproducible, scalable organoid platform al-

lowing the easy generation of large image databanks required for

leveraging the power of data analysis schemes based on deep

neural networks. The method has a broad applicability and can

be used with any kind of micropattern-based self-organized

structure, potentially including 3D organoids that can be grown

from a micropattern seed. We also foresee widespread applica-

bility of this methodwith future developments that focus on stan-

dardizing organoid cultures.

We have found that disease phenotypes can be subtle, andwe

therefore require specifically engineered reproducible organoids

to be able to identify such phenotypes reliably. This distinction

would be more challenging in the first generation of brain orga-

noids that mimic the complexity of multi-fate tissues, but with

limited reproducibility. However, even with the limited organoid

variability associated with micropatterning, phenotypic analysis

using deep neural networks was required to meet the stringent

statistical requirements of HTS. These powerful tools can extract

all existing features that constitute a complex phenotype while

simultaneously accounting for the natural variability of biological

data, leading to significantly improved classification accuracy

compared with methods that use pre-defined features. This

method also abolishes the need to engineer specific features

that may not be applicable in all situations. For example, ap-

proaches such as Cell Painting (Bray et al., 2016) contain a range

of features that rely on the segmentation of cells, which we found

to be impossible to perform reliably in an organoid context

because of the dense and complex 3D arrangement of the cells.

On the other hand, a current limitation of our approach is the dif-

ficulty of extracting the combination of features that a neural

network learns. However, improving the interpretability of net-

works is an active area of research (Olah et al., 2018), and we

have shown that simple approaches such as identifying the

contribution of individual imaging channels can already give

insight into which features are most useful for classification. In

addition, we have introduced an unbiased phenotypic space us-

ing autoencoders. This approach offers great potential for ob-

taining deeper insight into the effect of diseases and molecules

on phenotypes, since the directions in the latent space can be
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interpreted using the decoder part of the autoencoder. We have

already successfully used these neural networks for determining

the adverse effect of compounds, and a more detailed analysis

of the phenotypic space is a promising avenue for future

research.

The pleiotropic function of HTT is still far from being eluci-

dated, and how mutant HTT leads to the disease pathogenesis

is mostly unknown. Unfortunately, this is a common situation

for most rare neurological diseases. The lack of therapeutic

routes for HD is further exacerbated by an over-reliance on mu-

rine models, which for many neurological disorders translate

poorly to the human. While the ideal pre-clinical discovery tool

for HD would be the creation of a mature striatum showing

neurodegenerative hallmarks integrated within an HTS screen,

this is still far beyond our reach. Conversely, our method allows

precise quantification, unbiased discovery of newmechanism of

actions, and easy scalability in the context of an early develop-

mental transition. While being far from modeling patients at the

time of clinical onset, this has many advantages. (1) The body

of evidence pointing toward a developmental component of

HD is increasing, and with it the hypothesis that the disease

has its roots in development; (2) this allows convenient modeling

of the pre-disposition state of HD implied by the ubiquitous pres-

ence of mutant HTT from fertilization onward. If we could

normalize mutant HTT functions in the pre-manifest phase, we

could potentially push back clinical onset. (3) Our approach al-

lows integrating many of the unknown functions of HTT and

mutant HTT within a self-organized structure that integrates

many biological phenomena and results in a phenotype easily

learnable by deep neural networks. This has led to the agnostic

discovery of a new class of molecules, iBRDs, which not only

revert the effects of mutant HTT in developmental organoids

but also reduce neurotoxicity induced by the HTT CAG expan-

sion in vitro. This highlights how an unbiased phenotypic

approach can deliver molecules efficient at rescuing many of

the core toxic functions of mutant HTT without relying on a priori

hypotheses. Moreover, a crucial advantage of our approach over

existing pharmacogenomic methods that focus on transcrip-

tomic endpoints such as the Connectivity Map (Lamb et al.,

2006) or the Library of Integrated Network-based Cellular Signa-

tures (Stathias et al., 2020) is that organoids reproduce the com-

plex interactions of multiple tissues and the associated inter-

plays of multiple signaling pathways and morphogenetic

processes and, hence, represent a more integrated biological

readout.

There are currently no approved cures for HD, and clinical stra-

tegies exclusively aim at reducing HTT levels. This lack of alter-

native mechanisms of action highlights our poor understanding

of HD, as a significant body of research also points toward HD

as being at least partially due to a loss of function, or a more

complex interplay between mutant and WT HTT. Overall, this

lack of therapeutic handles stresses a dramatic need for newdis-

coveries. Here, using a completely unbiased approach, we

reveal that BRD inhibitors should be further explored and vali-

dated as therapeutic target for HD.

BRDs are the principal readers of ε-N-acetyl-lysine marks.

They therefore have an important role in the targeting of chro-

matin-modifying enzymes to specific genomic sites (Muller
et al., 2011). Progressive transcriptomic dysregulation is an es-

tablished hallmark of HD, with epigenetic deregulation as deter-

mined by DNA methylation or histone modifications becoming a

prevailing feature. In this context, multiple histone deacetylase

inhibitors have shown beneficial effects in HD mouse models

(Jia et al., 2015; Muller et al., 2011; Siebzehnrubl et al., 2018;

Thomas et al., 2008). Our discovery extends these findings by

showing the potential of epigenetic readers for HD besides

mark erasers such as histone deacetylase. Moreover, the BRD

family is highly druggable, and iBRDs that have been extensively

developed for cancer-related applications and are thought to

carry important potential for neurological disorders have been

poorly investigated. In this context, the BET BRD JQ1 has

been recently shown to provide no therapeutic benefit in mouse

models of HD (Kedaigle et al., 2020). However, the main target of

JQ1 is BRD4, and our results point toward other family members

such as BRD9, with the limitation that no genetic validation of

these targets was performed in our study that could disentangle

potential small-molecule off-target effects and would conclu-

sively identify the precise family member responsible for the

rescue. We therefore envision specific iBRDs to drive exciting

new therapeutic developments for HD.

In the future, the neuruloids used here will be replaced bymore

mature and differentiated neuronal structures with high repro-

ducibility. An exciting prospect is to also incorporate additional

readouts, such as transcriptomic data, into the phenotypic

space. This has the potential to lead to the generation of novel

hypotheses beyond classical pharmacology and has the poten-

tial to greatly expand our insight into the mechanisms and

possible treatments of a wide range of diseases.

Limitations of the study
We were not able to reliably segment nuclei in the neuruloids

because their density is much higher than in typical 3D organoid

structures. We have therefore limited ourselves to benchmarking

our results against tools that do not necessitate nuclear segmen-

tation. For validation of the screening results, there are further

approaches that we have not undertaken here, e.g., western

blots or qPCR for key cell types. At the level of our biological find-

ings, BRD9 has not been validated by other means than small-

molecule-based inhibition; a genetic knockdown approach

would strengthen the validation of this target in our assays.

Finally, given that no animal work has been performed here,

the validity of BRD9 as an HD target remains to be observed

in vivo.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PAX6 Rabbit Polyclonal BioLegend 901301

PAX6 Mouse monoclonal BD Biosciences 561462

SOX10 Goat Polyclonal R&D AF2864

COL4 Rabbit Polyclonal Abcam ab6586

MAP2 Chicken Polyclonal Abcam ab5392

Chemicals, peptides, and recombinant proteins

Laminin-521 BioLamina LN521-03

Rock inhibitor Y27632 Abcam ab120129

Accutase Stem Cell Technol. 07920

Triton X-100 Sigma 93443

SB-431542 Sigma s4317

LDN-193189 StemGent 04–0074

BDNF R&D 248-BDB

IGF1 R&D 291-G1

Experimental models: Cell lines

RUES2 stem cell line Rockefeller University NIH#0013

RUES2-HD allelic series Ruzo et al., (2018) N/A

RUES2-HTT KO with WT overexpression This paper N/A

Software and algorithms

Organoid screen analysis software This paper https://github.com/jjmetzger/

organoid_screen_analysis

https://doi.org/10.5281/zenodo.7009263

Scikit Image https://scikit-image.org/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Fred Etoc

(fred@rumiscientific.com).

Materials availability
The HTT overexpression line generated during this study is available from the lead contact upon request.

Data and code availability
The data reported in this paper will be shared by the lead contact upon request.

All original code for the screen analysis has been deposited at https://github.com/jjmetzger/organoid_screen_analysis/and

https://doi.org/10.5281/zenodo.7009263.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and clones
All experiments were performed using genetically engineered clones derived from the female RUES2 (NIH #0013) parental cell line,

which was created in the Brivanlou lab and is listed in the NIH Human Embryonic Stem Cell Registry. The RUES2-HD allelic series

used in this study was characterized and published previously (Ruzo et al., 2018).
e1 Cell Reports Methods 2, 100297, September 19, 2022

mailto:fred@rumiscientific.com
https://github.com/jjmetzger/organoid_screen_analysis/
https://doi.org/10.5281/zenodo.7009263
https://github.com/jjmetzger/organoid_screen_analysis
https://github.com/jjmetzger/organoid_screen_analysis
https://doi.org/10.5281/zenodo.7009263
https://scikit-image.org/


Article
ll

OPEN ACCESS
Cell culture
All hESC lines were grown in HUESMmedium that was conditioned with mouse embryonic fibroblasts and supplemented with 20 ng/

mL bFGF (MEF-CM). HUESM is the growth media that we used and differs from the standard H1 medium described by Thomson’s

group in the use of DMEM rather than DMEM/F12. Cells were tested for mycoplasma at 2-month intervals using the MycoSEQ My-

coplasma Detection System (ThermoFischer). Cells were grown on tissue 10 cm2 culture dishes coated with 1.5 mL Geltrex (Life

Technologies) solution diluted 1/100 from stock in DMEM/F12 for cell maintenance and propagation, and a 1/50 dilution for mono-

layered corrtical neural differentiation.

Micropatterned cell culture
Micropatterned glass cover slips (CYTOOCHIPSTM Arena A, Arena 500 A, Arena EMB A) were first coated with 10 mg/mL of recom-

binant Laminin-521 (BioLamina, LN521-03) diluted in PBS+/+ (+/+ meaning with Calcium and Magnesium, Gibco) for 3 h at 37�C.
Micropatterns were placed face-up on to Parafilm in a 10 cm dish, then 800 mL laminin solution was added to the micropattern. After

3 h at 37�C, the coated micropattern was transferred to a 35 mm dish with 5 mL of PBS+/+. Laminin was then removed with six serial

dilutions in PBS+/+ (dilution 1:4) before two complete washes in PBS+/+. The coatedmicropattern was kept in PBS+/+ at 37 �C. Cells
were seeded as follows: cells growing in MEF-CM on culture dishes were washed once with PBS-/- (Gibco), then treated with Ac-

cutase (Stem Cell Technologies) for 5 min. Cells were then triturated with a pipet to ensure single cell suspension and Accutase was

diluted out with 43HUESMmedium supplemented with 20 ng/mL bFGF and Rock inhibitor Y27632 (10 mM, Abcam ab120129). Cells

were then further diluted with the same medium and 53 105 (or as indicated) cells in 3.0 mL of medium were placed over the micro-

pattern in a 35mm tissue culture dish, then incubated at 37�C. After 3 h, themicropattern in a dishwaswashed oncewith PBS+/+ and

then replaced with HUESM with 10 mM SB431542 and 0.2 mM LDN 193189. At Day 3, the medium was replaced with HUESM with

10 mMSB431542 and BMP4 (10 ng/mL). At Day 5, the medium was replaced with the same fresh medium and incubated until day 7.

METHOD DETAILS

Immunofluorescence
Micropattern coverslips were fixed with 4% paraformaldehyde (Electron Microscopy Sciences 15713) in warm medium for 30 min,

rinsed three times with PBS-/-, and then blocked and permeabilized with 3% normal donkey serum (Jackson Immunoresearch 017-

000-121) with 0.5% Triton X-100 (Sigma 93443) in PBS-/- for 30 min. Micropatterns were incubated with primary antibodies for 1.5 h,

washed three times in PBS-/- for 5 min each, incubated with secondary antibodies conjugated with Alexa 488, Alexa 555, Alexa 594

or Alexa 647 (1/1000 dilution, Molecular Probes) and 10 ng/mL of 40,6-diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific

D1306) for 30 min and then washed two times with PBS-/-. For double staining with antibodies from the same species, Alexa 488

Fab fragments (Jackson Immunoresearch, 715-547-003) and Fab fragment IgG (Jackson Immunoresearch, 715-007-003) were

used. Coverslips were mounted on slides using ProLong Gold antifade mounting medium (Molecular Probes P36934).

Imaging
All confocal images were acquired on a Zeiss Inverted LSM 780 laser scanning confocal microscope with a 10X or 20X water-immer-

sion objective. 4 equally spaced Z planes spanning the height of each neuruloid were acquired and their maximumprojection used as

input for the neural networks.

High-throughput screening
We adapted our protocol for neuruloids formation onmicropatterned chips to 96 well plates. Briefly, one day before cell plating, micro-

patterned 96well plates with 700 mmdisks (CYTOO) were coatedwith laminin for 3 h using a wellmate dispenser and a solution of 100ul

per well. Plates were then washed 3 times with 200 mL PBS+/+ per well, wrapped in parafilm and stored overnight at 4 degrees. On the

day of cell seeding, a single cell suspension at a density of 0.18M cells/mLwas prepared with the same specification as in our protocol

for chips. The final volume of the resuspensionwas calculated to be 20mL per plate and adding an extra 20mL to account for the dead

volume of the cell dispenser. For seeding, the wellmate was used for aspirating the PBS+/+ from the plates and dispensing 200 mL/well

of cell suspension. Just after seeding, the plates were placed on a flat bench and laterally shaken on the surface in a cross-like shape to

homogenize the cell suspension in each well after which the plates were left untouched on the bench for 1 h for the cell suspension to

homogeneously sediment and attach on the glass substrate. After 1 h, the plates containing cells were returned to the incubator for 3hrs.

Following cell seeding, the plateswere processed according to our neuruloids differentiation protocol in an EL406 robot allowing to pro-

cess 12 plate at a time for bothmedia changes at days 3 and 5 of differentiation, but also immunostaining. Duringmedia changes, com-

pounds were applied at a 10 mM final concentration using an automated Biomek FXp (Beckman Coulter) equipped with dual (96/384-

well and Span8) pipetting arms and pin tool (VP Scientific) for compound pinning form the compound library plate to the assay plates, or

manually using a manual floating pinning tool from V&P Scientific. After staining, plates were sealed with black stickers and kept in the

fridge before imaging with an InCell Analyzer 2000 high-content imager and 4X lens allowing to image full wells with four tiles. A single Z

plane was acquired, using the auto-focus on the PAX6 channel. After acquiring all images, individual wells were stitched and individual

colony extracted using a customMatlab code described previously (Etoc et al., 2016). For each experiment realized in 96 well plates, 2

control plates of untreated 56CAG and 2 control plates of untreated 20CAG were used in addition to the assay plates that were
Cell Reports Methods 2, 100297, September 19, 2022 e2
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contacted with compounds.Moreover, the wells on the side of each treated plateswere left unperturbed as control wells. Hit molecules

are: hit#1: Bromosporine, hit#2: BI-D1879, hit#3: MK-2461, hit#4: Ponatinib, hit#5:

BrCCO\N = C1\Cð\NC2 = C\1C = CC = C2Þ = C1\Cð= OÞNC2 = CCðBr = CC = C12Þ
Neuronal differentiation and BDNF assay
Isogenic lines were subjected to a default neural induction protocol adapted from a protocol published previously (Shi et al., 2012). In

short, cultures were seeded in confluent adherent culture, at 13105 cells/cm2 and fed every day with N2B27 serum-freemediumwith

TGFb inhibition (10 mMSB-431542, Sigma and 0.2 mM LDN-193189, StemGent) applied for the first 10 days and 5 ng/mL FGF8 (R&D

Systems) from day 12–22 to maximize the frequency of CTIP2 (BCL11B)-positive cells, dissociated and seeded on adherent sub-

strate (polyornithine/laminin, Ibidi) at day 14, continued in culture with added BDNF (R&D Systems, 10 ng/mL), IGF1 (R&D Systems,

10 ng/mL), cAMP (1 mM, R&D Systems) and ascorbic acid (200 mM, Sigma), until dissociation and reseeding on a 96 well plate with

glass bottom at day 40. At this stage, for BDNF removal assays, samples were kept in medium with or without all growth factors

removed for 7 days together with or without small molecules, before fixation and analysis at day 47. The TUNEL assay was then per-

formed with a kit from Abcam (ab66110) and counterstained with DAPI and MAP2. Multiple images from 4 separate wells per con-

dition were taken at 203magnification (exact numbers listed in the legend of Figure 4H). TUNEL fluorescent intensity was measured

at the location of nuclei as indicated by the DAPI stain. DAPI-positive nuclei were identified using Otsu thresholding implemented in

scikit-image, and TUNEL intensity was summed at the location of DAPI-positive pixels and normalized by the DAPI intensity. TUNEL

intensity was then normalized to the mean of the untreated controls.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of HTT and mutant HTT levels
Weperformed the neuruloid experiments in 96well plates treated with compounds or untreated in control wells. At the end of the exper-

imentmediumwas removed,sampleswerewashedwithPBSonce,before removingany liquid left formthecells, freezing theplates indry

ice andshipping toCharlesRiverLaboratory formutantandWTHTT levelsquantificationusing theMSDmethod (Macdonaldetal., 2014).

Neural network analysis
For both data cleaning and classification, we used a well-established image classification pipeline based on pretrained residual neu-

ral networks (He et al., 2016) as implemented in the Fastai library (Howard andGugger, 2020), which is based on the PyTorchmachine

learning framework (Paszke et al., 2019). For all applications, we found that already the smallest of the standard residual network

architectures (resnet18) gave excellent classification results. We used 3-channel images and normalized them according to the

same normalization that was used in the original residual network training performed on the Imagenet dataset (mean and standard

deviation per channel (0.485, 0.456, 0.406) and (0.229, 0.224, 0.225), respectively). The last layer of these pre-trained networks was

removed and replacedwith the default untrained combination of the Fastai library (concatenated adaptive average pool and adaptive

maximum pool, batch norm, drop-out and additional dense layers that reduce to the final two output nodes). The training data was

split randomly into a training and validation set with a ratio of 70% to 30%. For the phenotypic screen, control data consisted of a total

of 4879 images (2333/2546WT/HD), whichwere split into 3415 (1633/1782WT/HD) training and 1464 validation images (700/764WT/

HD). The trained models were then applied to a total of 32173 images from the compound plates. Models were first trained with all

layers frozen except for the untrained last layers, using one-cycle learning (Smith, 2018), a maximum learning rate of 0.003 and the

Adam adaptive learning algorithm (Kingma andBa, 2015). Subsequently, all layers were unfrozen and trainedwith differential learning

rates between 10^-6 and 10^-4. Training was performed until the training loss did not decrease further. Overfitting was avoided by

using dropout layers and data augmentation, including random flips, rotations, zooms, contrast changes and affine transformations.

The training accuracy did not exceed the validation accuracy, indicating that our models were not overfitting.

For data cleaning, we chose to first train a neural network on images of nuclear DAPI stains that would recognize well-formed or-

ganoids and would filter out images with no cells or with detached or merged organoids. For this, we prepared a training set of 3698

annotated images and trained a neural network as described above. The results, shown in Figure S1, allowed us to efficiently pre-

process all similar datasets. For data cleaning of the 500 mM neuruloid data presented in Figures 4C–4F, we directly used the latent

space of the autoencoder to detect abnormally formed colonies. These show up as a separate cluster in the latent space and can

easily be removed from the analysis. We also found that, because of subtly varying imaging conditions for the different samples

in Figures 4C–4F, matching the intensity histograms of images to the histogram of a randomly chosen reference image improved

the classification accuracy. This was done using the match_histograms function implemented in scikit-image.

To obtain the phenotypic space, we implemented a customautoencoder. Sincewe could not use pretrained networks as for the clas-

sifier andhad to train the network fromscratch,wechoseasmall architectureconsistingof twoconvolutional layers (with 32and64filters

respectively, and associated ELU activation, max pooling and batch normalization layers). The results after those operationsweremap-

ped to the latent space, after which the data passed through a similar inverse architecture (two transposed convolutional layers with 64

and32filters, respectively) andafinal sigmoid layer.Theautoencoderwas trainedusing themeansquarederror andAdamalgorithmwith

a learning rate of 2e-5. We found that the dimensionality of the latent space did not have a significant effect (Figure S2).
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