488 research outputs found

    TOF-Brho Mass Measurements of Very Exotic Nuclides for Astrophysical Calculations at the NSCL

    Full text link
    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The Time-of-Flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements, the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Brho technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.Comment: 8 pages, 4 figures, submitted to Journal of Physics G, proceedings of Nuclear Physics in Astrophysics II

    A high efficiency, low background detector for measuring pair-decay branches in nuclear decay

    Get PDF
    We describe a high efficiency detector for measuring electron-positron pair transitions in nuclei. The device was built to be insensitive to gamma rays and to accommodate high overall event rates. The design was optimized for total pair kinetic energies up to about 7 MeV.Comment: Accepted for publication by Nucl. Inst. & Meth. in Phys. Res. A (NIM A

    Synthesis and magnetic characterization of co-axial Ge1-xMnx/a-Si heterostructures

    Get PDF
    A method for synthesizing Ge1–xMnx/a-Si core–shell nanowires (x = 0.3(1)–1.0(2)) using a supercritical fluid deposition technique, with a homogeneous distribution of manganese along the entire lengths of the crystalline Ge cores but not in the a-Si shells, is reported. Investigations into the magnetic properties of the heterostructured nanowires revealed a significant influence of the amorphous Si shell covering the surface of the core Ge0.997Mn0.003 nanowires compared to pristine Ge0.997Mn0.003 nanowires with no a-Si coating. The magnetic data revealed diminished values of both the remanence and the saturation magnetization for pristine Mn-doped Ge nanowires at higher temperatures when compared to the Ge1–xMnx/a-Si core–shell nanowires, whereas both parameters increased as the temperature dropped down to 5 K. Differences in the temperature-dependent evolution of the coercivity were observed in the magnetically harder core–shell nanowires compared to the pristine Ge0.997Mn0.003 nanowires, showing a drop of 26% at 5 K vs room temperature compared to a drop of 66% for the pristine nanowires. The low dopant concentration (0.3(1)%) of Mn in the core–shell nanowires, combined with the observed ferromagnetic properties, suggests a combination of hole-mediated exchange and confinement processes are responsible for the observed properties. Our observations show the importance of a protective layer in covering the oxidation-sensitive dilute magnetic semiconductor nanowires

    Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS

    Get PDF
    We present a detailed examination of a multiple InxGa1-xN quantum well (QW) structure for optoelectronic applications. The characterization is carried out using scanning transmission electron microscopy (STEM), combining high-angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS). Fluctuations in the QW thickness and composition are observed in atomic resolution images. The impact of these small changes on the electronic properties of the semiconductor material is measured through spatially localized low-loss EELS, obtaining band gap and plasmon energy values. Because of the small size of the InGaN QW layers additional effects hinder the analysis. Hence, additional parameters were explored, which can be assessed using the same EELS data and give further information. For instance, plasmon width was studied using a model-based fit approach to the plasmon peak; observing a broadening of this peak can be related to the chemical and structural inhomogeneity in the InGaN QW layers. Additionally, Kramers-Kronig analysis (KKA) was used to calculate the complex dielectric function (CDF) from the EELS spectrum images (SIs). After this analysis, the electron effective mass and the sample absolute thickness were obtained, and an alternative method for the assessment of plasmon energy was demonstrated. Also after KKA, the normalization of the energy-loss spectrum allows us to analyze the Ga 3d transition, which provides additional chemical information at great spatial resolution. Each one of these methods is presented in this work together with a critical discussion of their advantages and drawbacks

    Beta-decay of nuclei around Se-90. Search for signatures of a N=56 sub-shell closure relevant the r-process

    Full text link
    Nuclear structure plays a significant role on the rapid neutron capture process (r-process) since shapes evolve with the emergence of shells and sub-shells. There was some indication in neighboring nuclei that we might find examples of a new N=56 sub-shell, which may give rise to a doubly magic Se-90 nucleus. Beta-decay half lives of nuclei around Se-90 have been measured to determine if this nucleus has in fact a doubly-magic character. The fragmentation of Xe-136 beam at the National Superconducting Cyclotron Laboratory at Michigan State University was used to create a cocktail of nuclei in the A=90 region. We have measured the half lives of twenty-two nuclei near the r-process path in the A=90 region. The half lives of As-88 and Se-90 have been measured for the first time. The values were compared with theoretical predictions in the search for nuclear-deformation signatures of a N=56 sub-shell, and its possible role in the emergence of a potential doubly-magic Se-90. The impact of such hypothesis on the synthesis of heavy nuclei, particularly in the production of Sr, Y and Zr elements was investigated with a weak r-process network. The new half lives agree with results obtained from a standard global QRPA model used in r-process calculations, indicating that Se-90 has a quadrupole shape incompatible with a closed N=56 sub-shell in this region. The impact of the measured Se-90 half-life in comparison with a former theoretical predication associated with a spherical half-life on the weak-r-process is shown to be strong

    Beta-decay half-lives and beta-delayed neutron emission probabilities of nuclei in the region below A=110, relevant for the r-process

    Full text link
    Measurements of the beta-decay properties of r-process nuclei below A=110 have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. Beta-decay half-lives for Y-105, Zr-106,107 and Mo-111, along with beta-delayed neutron emission probabilities of Y-104, Mo-109,110 and upper limits for Y-105, Zr-103,104,105,106,107 and Mo-108,111 have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.Comment: 21 pages, 10 figures, article accepted for publication in Physical Review
    • …
    corecore