5,472 research outputs found

    Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude

    Full text link
    Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer. Absolute calibration was made by parallel measurements of Coulomb scattering of muons. Parameters of a pion-nucleus optical potential were obtained from fits to all eight angular distributions put together. The `anomalous' s-wave repulsion known from pionic atoms is clearly observed and could be removed by introducing a chiral-motivated density dependence of the isovector scattering amplitude, which also greatly improved the fits to the data. The empirical energy dependence of the isoscalar amplitude also improves the fits to the data but, contrary to what is found with pionic atoms, on its own is incapable of removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on uncertainties,extended discussion. To appear in PR

    Inhibitor of Apoptosis Proteins as Novel Targets in Inflammatory Processes

    Get PDF
    Objective: Inhibitor of apoptosis proteins (IAPs), such as X-linked or cellular IAP 1/2 (XIAP, cIAP1/2), are important regulators of apoptosis. IAP antagonists are currently under clinical investigation as anticancer agents. Interestingly, IAPs participate in the inflammation-associated TNF receptor signaling complex and regulate NFκB signaling. This raises the question about the role of IAPs in inflammation. Here, we investigated the anti-inflammatory potential of IAP inhibitors and the role of IAPs in inflammatory processes of endothelial cells. Methods and Results: In mice, the small molecule IAP antagonist A-4.10099.1 (ABT) suppressed antigen-induced arthritis, leukocyte infiltration in concanavalin A-evoked liver injury, and leukocyte transmigration in the TNFα-activated cremaster muscle. In vitro, we observed an attenuation of leukocyte– endothelial cell interaction by downregulation of the intercellular adhesion molecule-1. ABT did not impair NFκB signaling but decreased the TNFα-induced activation of the TGF-β–activated kinase 1, p38, and c-Jun N-terminal kinase. These effects are based on the proteasomal degradation of cIAP1/2 accompanied by an altered ratio of the levels of membrane-localized TNF receptor-associated factors 2 and 5. Conclusion: Our results reveal IAP antagonism as a profound anti-inflammatory principle in vivo and highlight IAPs as important regulators of inflammatory processes in endothelial cells

    Search for Exotic Muon Decays

    Get PDF
    Recently, it has been proposed that the observed anomaly in the time distribution of neutrino induced reactions, reported by the KARMEN collaboration, can be interpreted as a signal from an exotic muon decay branch mu+ to e+ X. It has been shown that this hypothesis gives an acceptable fit to the KARMEN data if the boson X has a mass of m_X=103.9MeV/c^2, close to the kinematical limit. We have performed a search for the X particle by studying for the first time the very low energy part of the Michel spectrum in mu+ decays. Using a HPGe detector setup at the muE4 beamline at PSI we find branching ratios BR(mu+ to e+ X)<5.7e-4 (90% C.L.) for most of the region 103MeV/c^2<m_X<105MeV/c^2.Comment: 9 page

    International Space Station Columbus Payload SoLACES Degradation Assessment

    Get PDF
    SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 2900 nm). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar AutoCalibrating Extreme UV/UV Spectrophotometers)
    corecore