1,325 research outputs found

    Connecting the dots: online maps for improved access to information on agricultural research projects

    Get PDF
    COLLECTIVE ACTION NEWS is a periodical e-publication of the CGIAR’s Regional Collective Action in Eastern and Southern Afric

    A panoramic VISTA of the stellar halo of NGC 253

    Full text link
    Outskirts of large galaxies contain important information about the galaxy formation and assembly process, and resolved star count studies can probe the extremely low surface brightness of the outer halos. We use images obtained with the VISTA telescope to construct spatially resolved J vs Z-J colour-magnitude diagrams (CMDs) of NGC 253, a nearly edge-on disk galaxy in the Sculptor group. The very deep photometry, down to J ~ 23.5, and the wide area covered allows us to trace the red giant branch (RGB) and asymptotic giant branch (AGB) stars that belong to the outer disk and the halo of NGC 253, out to 50 kpc along the galaxy minor axis. We confirm the existence of an extra planar stellar component of the disk, with a very prominent southern shelf and a symmetrical feature on the north side. The only additional visible sub-structure is an overdensity in the north-west part of the halo at about 28 kpc from the plane and extending over ~ 20 kpc parallel with the disk of the galaxy. From the stellar count profile along the major axis we measure the transition from the disk to the halo at a radial distance of about 25 kpc, where a clear break appears in the number density profile. The isodensity contours show that the inner halo is a flattened structure that blends with a more extended, diffuse, rounder outer halo. Such external structure can be traced to the very edge of our image out to 50 kpc from the disk plane. The number density profile of the stars in the stellar halo follows a power law with index -1.6, as function of radius. The CMD shows a very homogeneous stellar population across the whole field; by comparison with theoretical isochrones we conclude that the RGB stars are ~ 8 Gyr old or more, while the AGB stars trace a population of about 2 x 10^8 Mo, formed from ~ 0.5 to a few Gyr ago. Surprisingly, part of this latter population appears scattered over a wide area.Comment: To appear on Astronomy and Astrophysic

    Methods for estimating the volume of individual glomeruli

    Get PDF
    Methods for estimating the volume of individual glomeruli.BackgroundThe Cavalieri and maximal planar area (MPA) methods are commonly used to measure the volume of individual glomeruli. Previous studies have suggested that the MPA method, which is less laborious, yields values that are much greater than those obtained by the Cavalieri method. The current study re-examined the relationship of MPA and Cavalieri values for glomerular volume in humans and rats.MethodsBoth methods were used to measure the volume of 1201 glomeruli from 58 humans and 281 glomeruli from 15 rats. Tissue was embedded in Epon. Further mathematical analysis was performed to assess the extent to which deviation of glomeruli from spherical shape affects the relationship of values obtained by the MPA and Cavalieri methods.ResultsMPA values exceeded Cavalieri values by an average of only 14 ± 22% in humans and 6 ± 16% in rats. The relationship of MPA to Cavalieri values was similar in individual humans and rats, with widely varying values for average glomerular volume. Neither the development of sclerosis nor the loss of any connection to a tubule affected the relationship of the MPA and Cavalieri values for the volume of individual glomeruli. Mathematical analysis showed that MPA values would not exceed Cavalieri values if glomeruli had ellipsoidal rather than spherical shape.ConclusionSimilar values for glomerular volume are obtained using the Cavalieri and MPA methods in humans and rats

    Multi-species turbulent mixing under supercritical-pressure conditions: modelling, direct numerical simulation and analysis revealing species spinodal decomposition

    Get PDF
    A model is developed for describing mixing of several species under high-pressure conditions. The model includes the Peng–Robinson equation of state, a full massdiffusion matrix, a full thermal-diffusion-factor matrix necessary to incorporate the Soret and Dufour effects and both thermal conductivity and viscosity computed for the species mixture using mixing rules. Direct numerical simulations (DNSs) are conducted in a temporal mixing layer configuration. The initial mean flow is perturbed using an analytical perturbation which is consistent with the definition of vorticity and is divergence free. Simulations are performed for a set of five species relevant to hydrocarbon combustion and an ensemble of realizations is created to explore the effect of the initial Reynolds number and of the initial pressure. Each simulation reaches a transitional state having turbulent characteristics and most of the data analysis is performed on that state. A mathematical reformulation of the flux terms in the conservation equations allows the definition of effective species-specific Schmidt numbers (Sc) and of an effective Prandtl number (Pr) based on effective speciesspecific diffusivities and an effective thermal conductivity, respectively. Because these effective species-specific diffusivities and the effective thermal conductivity are not directly computable from the DNS solution, we develop models for both of these quantities that prove very accurate when compared with the DNS database. For two of the five species, values of the effective species-specific diffusivities are negative at some locations indicating that these species experience spinodal decomposition; we determine the necessary and sufficient condition for spinodal decomposition to occur. We also show that flows displaying spinodal decomposition have enhanced vortical characteristics and trace this aspect to the specific features of high-density-gradient magnitude regions formed in the flows. The largest values of the effective speciesspecific Sc numbers can be well in excess of those known for gases but almost two orders of magnitude smaller than those of liquids at atmospheric pressure. The effective thermal conductivity also exhibits negative values at some locations and the effective Pr displays values that can be as high as those of a liquid refrigerant. Examination of the equivalence ratio indicates that the stoichiometric region is thin and coincides with regions where the mixture effective species-specific Lewis number values are well in excess of unity. Very lean and very rich regions coexist in the vicinity of the stoichiometric region. Analysis of the dissipation indicates that it is dominated by mass diffusion, with viscous dissipation being the smallest among the three dissipation modes. The sum of the heat and species (i.e. scalar) dissipation is functionally modelled using the effective species-specific diffusivities and the effective thermal conductivity. Computations of the modelled sum employing the modelled effective species-specific diffusivities and the modelled effective thermal conductivity shows that it accurately replicates the exact equivalent dissipation

    Synthesis and characterization of magnetic and antibacterial nanoparticles as filler in acrylic cements for bone cancer and comorbidities therapy

    Get PDF
    In this work an innovative formulation of bone cement for the treatment of bone tumor and its associated complications has been designed by preparing a new class of Fe3O4–Ag nanostructures, using gallic acid as a reducing agent. The obtained nanoparticles have been introduced in polymethyl methacrylate (PMMA)-based composite cement evaluating the insertion of different amounts and the use of different mixing methods. The morphology, the composition and the antibacterial effect of Fe3O4–Ag nanostructures have been investigated together with the morphology, the composition, the mechanical properties of the nanoparticles-containing composite cements as well as their antibacterial effect. The obtained results revealed a good antimicrobial effect of Fe3O4–Ag nanostructures, a significant influence of their amount and of the used mixing method on the particles dispersion and agglomeration in the PMMA matrix and, as a result, on the mechanical properties. In particular, a better dispersion of nanoparticles was obtained by using the mechanical mixing, reducing the tendency to agglomerate. The increase of nanoparticles amount induced a slight decrease of the mechanical properties; however, the introduction of 10% w/w of Fe3O4–Ag allowed to improve the composites ability to reduce the bacteria adhesion

    In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors.

    Get PDF
    Aberrant Hedgehog (Hh)/glioma-associated oncogene (GLI) signaling has been implicated in cancer progression. Here, we analyzed GLI1, Sonic Hedgehog (Shh) and NF-ÎşB expression in 51 breast cancer (ductal carcinoma) tissues using immunohistochemistry. We found a positive correlation between nuclear GLI1 expression and tumor grade in ductal carcinoma cases. Cytoplasmic Shh staining significantly correlated with a lower tumor grade. Next, the in vitro effects of two Hh signaling pathway inhibitors on breast cancer cell lines were evaluated using the Smoothened (SMO) antagonist GDC-0449 and the direct GLI1 inhibitor GANT-61. GDC-0449 and GANT-61 exhibited the following effects: a) inhibited breast cancer cell survival; b) induced apoptosis; c) inhibited Hh pathway activity by decreasing the mRNA expression levels of GLI1 and Ptch and inhibiting the nuclear translocation of GLI1; d) increased/decreased EGFR and ErbB2 protein expression, reduced p21- Ras and ERK1/ERK2 MAPK activities and inhibited AKT activation; and e) decreased the nuclear translocation of NF-ÎşB. However, GANT-61 exerted these effects more effectively than GDC-0449. The in vivo antitumor activities of GDC-0449 and GANT- 61 were analyzed in BALB/c mice that were subcutaneously inoculated with mouse breast cancer (TUBO) cells. GDC-0449 and GANT-61 suppressed tumor growth of TUBO cells in BALB/c mice to different extents. These findings suggest that targeting the Hh pathway using antagonists that act downstream of SMO is a more efficient strategy than using antagonists that act upstream of SMO for interrupting Hh signaling in breast cancer

    Measurement of power spectral density of broad-spectrum visible light with heterodyne near field scattering and its scalability to betatron radiation.

    Get PDF
    We exploit the speckle field generated by scattering from a colloidal suspension to access both spatial and temporal coherence properties of broadband radiation. By applying the Wiener-Khinchine theorem to the retrieved temporal coherence function, information about the emission spectrum of the source is obtained in good agreement with the results of a grating spectrometer. Experiments have been performed with visible light. We prove more generally that our approach can be considered as a tool for modeling a variety of cases. Here we discuss how to apply such diagnostics to broad-spectrum betatron radiation produced in the laser-driven wakefield accelerator under development at SPARC LAB facility in Frascati
    • …
    corecore