704 research outputs found

    The maternal social environment shapes offspring growth, physiology, and behavioural phenotype in guinea pigs.

    Get PDF
    Prenatal conditions influence offspring development in many species. In mammals, the effects of social density have traditionally been considered a detrimental form of maternal stress. Now their potential adaptive significance is receiving greater attention.Sex-specific effects of maternal social instability on offspring in guinea pigs (Cavia aperea f. porcellus) have been interpreted as adaptations to high social densities, while the effects of low social density are unknown. Hence, we compared morphological, behavioural and physiological development between offspring born to mothers housed either individually or in groups during the second half of pregnancy.Females housed individually and females housed in groups gave birth to litters of similar size and sex-ratios, and there were no differences in birth weight. Sons of individually-housed mothers grew faster than their sisters, whereas daughters ofgroup-housed females grew faster than their brothers, primarily due to an effect on growth of daughters. There were few effects on offspring behaviour. Baseline cortisol levels in saliva of pups on day 1 and day 7 were not affected, but we saw a blunted cortisol response to social separation on day 7 in sons of individually-housed females and daughters of group-housed females. The effects were consistent across two replicate experiments.The observed effects only partially support the adaptive hypothesis. Increased growth of daughters may be adaptive under high densities due to increasedfemale competition, but it is unclear why growth of sons is not increased under low social densities when males face less competition from older, dominant males. The differences in growth may be causally linked to sex-specific effects on cortisol response, although individual cortisol response and growth were not correlated, and various other mechanisms are possible. The observed sex-specific effects on early development are intriguing, yet the potential adaptive benefits and physiological mechanisms require further study

    B-cell populations discriminate between pediatric- and adult-onset multiple sclerosis

    Get PDF
    Objective: To comparatively assess the B-cell composition in blood and CSF of patients with pediatric-onset multiple sclerosis (pedMS) and adult-onset multiple sclerosis (adMS). / Methods: In this cross-sectional study, we obtained blood and CSF samples from 25 patients with pedMS (8–18 years) and 40 patients with adMS (23–65 years) and blood specimens from 66 controls (1–55 years). By using multicolor flow cytometry, we identified naive, transitional, isotype class-switched memory, nonswitched memory, and double-negative memory B-cell subsets as well as plasmablasts (PB) and terminally differentiated plasma cells (PC). Flow cytometric data were compared to concentrations of B-cell-specific cytokines in serum and CSF as determined by ELISA. / Results: Frequencies of circulating naive B-cells decreased with higher age in controls but not in patients with multiple sclerosis (MS). B-cell patterns in CSF differed between pedMS and adMS with an acute relapse: in pedMS-derived CSF samples, high frequencies of nonswitched memory B cells and PB were present, whereas class-switched memory B cells and PC dominated in the CSF of patients with adMS. In pedMS, PB were also elevated in the periphery. Accumulation of PB in the CSF correlated with high intrathecal CXCL-13 levels and augmented intrathecal synthesis of immunoglobulin G and immunoglobulin M. / Conclusions: We demonstrate distinct changes in intrathecal B-cell homeostasis in patients with pedMS during active disease, which differ from those in adults by an expansion of plasmablasts in blood and CSF and similarly occur in prototypic autoantibody-driven autoimmune disorders. This emphasizes the particular importance of activated B-lymphocyte subsets for disease progression in the earliest clinical stages of MS

    Edge and bulk effects in the Terahertz-photoconductivity of an antidot superlattice

    Full text link
    We investigate the Terahertz(THz)-response of a square antidot superlattice by means of photoconductivity measurements using a Fourier-transform-spectrometer. We detect, spectrally resolved, the cyclotron resonance and the fundamental magnetoplasmon mode of the periodic superlattice. In the dissipative transport regime both resonances are observed in the photoresponse. In the adiabatic transport regime, at integer filling factor ν=2\nu =2, only the cyclotron resonance is observed. From this we infer that different mechanisms contribute to converting the absorption of THz-radiation into photoconductivity in the cyclotron and in the magnetoplasmon resonances, respectively.Comment: 15 pages, 4 figures, submitted to Phys. Rev.

    A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies

    Get PDF
    We have measured differential cross sections for \pp elastic scattering with internal fiber targets in the recirculating beam of the proton synchrotron COSY. Measurements were made continuously during acceleration for projectile kinetic energies between 0.23 and 2.59 GeV in the angular range 30≤θc.m.≤9030 \leq \theta_{c.m.} \leq 90 deg. Details of the apparatus and the data analysis are given and the resulting excitation functions and angular distributions presented. The precision of each data point is typically better than 4%, and a relative normalization uncertainty of only 2.5% within an excitation function has been reached. The impact on phase shift analysis as well as upper bounds on possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure
    • …
    corecore