21 research outputs found

    The concordance between the volume hotspot and the grade hotspot: a 3-D reconstructive model using the pathology outputs from the PROMIS trial.

    Get PDF
    The rationale for directing targeted biopsy towards the centre of lesions has been questioned in light of prostate cancer grade heterogeneity. In this study, we assess the assumption that the maximum cancer Gleason grade (Gleason grade hotspot) lies within the maximum dimension (volume hotspot) of a prostate cancer lesion. 3-D histopathological models were reconstructed using the outputs of the 5-mm transperineal mapping (TPM) biopsies used as the reference test in the pilot phase of Prostate Mri Imaging Study (PROMIS), a paired validating cohort study investigating the performance of multi-parametric magnetic resonance imaging (MRI) against transrectal ultrasound (TRUS) biopsies. The prostate was fully sampled with 5 mm intervals; each core was separately labelled, inked and orientated in space to register 3-D cancer lesions location. The data from the histopathology results were used to create a 3-D interpolated reconstruction of each lesion and identify the spatial coordinates of the largest dimension (volume hot spot) and highest Gleason grade (Gleason grade hotspot) and assess their concordance. Ninety-four men, with median age 62 years (interquartile range, IQR= 58-68) and median PSA 6.5 ng ml(-1) (4.6-8.8), had a median of 80 (I69-89) cores each with a median of 4.5 positive cores (0-12). In the primary analysis, the prevalence of homogeneous lesions was 148 (76%; 95% confidence interval (CI) ±6.0%). In all, 184 (94±3.2%) lesions showed concordant hotspots and 11/47 (23±12.1%) of heterogeneous lesions showed discordant hotspots. The median 3-D distance between discordant hotspots was 12.8 mm (9.9-15.5). These figures remained stable on secondary analyses using alternative reconstructive assumptions. Limitations include a certain degree of error within reconstructed models. Guiding one biopsy needle to the maximum cancer diameter would lead to correct Gleason grade attribution in 94% of all lesions and 79% of heterogeneous ones if a true hit was obtained. Further correlation of histological lesions, their MRI appearance and the detectability of these hotspots on MRI will be undertaken once PROMIS results are released

    Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study.

    Get PDF
    Background Men with high serum prostate specific antigen usually undergo transrectal ultrasound-guided prostate biopsy (TRUS-biopsy). TRUS-biopsy can cause side-effects including bleeding, pain, and infection. Multi-parametric magnetic resonance imaging (MP-MRI) used as a triage test might allow men to avoid unnecessary TRUS-biopsy and improve diagnostic accuracy.Methods We did this multicentre, paired-cohort, confirmatory study to test diagnostic accuracy of MP-MRI and TRUS-biopsy against a reference test (template prostate mapping biopsy [TPM-biopsy]). Men with prostate-specific antigen concentrations up to 15 ng/mL, with no previous biopsy, underwent 1·5 Tesla MP-MRI followed by both TRUS-biopsy and TPM-biopsy. The conduct and reporting of each test was done blind to other test results. Clinically significant cancer was defined as Gleason score ≥4 + 3 or a maximum cancer core length 6 mm or longer. This study is registered on ClinicalTrials.gov, NCT01292291.Findings Between May 17, 2012, and November 9, 2015, we enrolled 740 men, 576 of whom underwent 1·5 Tesla MP-MRI followed by both TRUS-biopsy and TPM-biopsy. On TPM-biopsy, 408 (71%) of 576 men had cancer with 230 (40%) of 576 patients clinically significant. For clinically significant cancer, MP-MRI was more sensitive (93%, 95% CI 88-96%) than TRUS-biopsy (48%, 42-55%; p<0·0001) and less specific (41%, 36-46% for MP-MRI vs 96%, 94-98% for TRUS-biopsy; p<0·0001). 44 (5·9%) of 740 patients reported serious adverse events, including 8 cases of sepsis.Interpretation Using MP-MRI to triage men might allow 27% of patients avoid a primary biopsy and diagnosis of 5% fewer clinically insignificant cancers. If subsequent TRUS-biopsies were directed by MP-MRI findings, up to 18% more cases of clinically significant cancer might be detected compared with the standard pathway of TRUS-biopsy for all. MP-MRI, used as a triage test before first prostate biopsy, could reduce unnecessary biopsies by a quarter. MP-MRI can also reduce over-diagnosis of clinically insignificant prostate cancer and improve detection of clinically significant cancer.Funding PROMIS is funded by the UK Government Department of Health, National Institute of Health Research-Health Technology Assessment Programme, (Project number 09/22/67). This project is also supported and partly funded by UCLH/UCL Biomedical Research Centre and The Royal Marsden and Institute for Cancer Research Biomedical Research Centre and is coordinated by the Medical Research Council Clinical Trials Unit (MRC CTU) at UCL. It is sponsored by University College London (UCL)

    Regional Histopathology and Prostate MRI Positivity: A Secondary Analysis of the PROMIS Trial.

    Full text link
    Background The effects of regional histopathologic changes on prostate MRI scans have not been accurately quantified in men with an elevated prostate-specific antigen (PSA) level and no previous biopsy. Purpose To assess how Gleason grade, maximum cancer core length (MCCL), inflammation, prostatic intraepithelial neoplasia (PIN), or atypical small acinar proliferation within a Barzell zone affects the odds of MRI visibility. Materials and Methods In this secondary analysis of the Prostate MRI Imaging Study (PROMIS; May 2012 to November 2015), consecutive participants who underwent multiparametric MRI followed by a combined biopsy, including 5-mm transperineal mapping (TPM), were evaluated. TPM pathologic findings were reported at the whole-prostate level and for each of 20 Barzell zones per prostate. An expert panel blinded to the pathologic findings reviewed MRI scans and declared which Barzell areas spanned Likert score 3-5 lesions. The relationship of Gleason grade and MCCL to zonal MRI outcome (visible vs nonvisible) was assessed using generalized linear mixed-effects models with random intercepts for individual participants. Inflammation, PIN, and atypical small acinar proliferation were similarly assessed in men who had negative TPM results. Results Overall, 161 men (median age, 62 years [IQR, 11 years]) were evaluated and 3179 Barzell zones were assigned MRI status. Compared with benign areas, the odds of MRI visibility were higher when a zone contained cancer with a Gleason score of 3+4 (odds ratio [OR], 3.1; 95% CI: 1.9, 4.9; P < .001) or Gleason score greater than or equal to 4+3 (OR, 8.7; 95% CI: 4.5, 17.0; P < .001). MCCL also determined visibility (OR, 1.24 per millimeter increase; 95% CI: 1.15, 1.33; P < .001), but odds were lower with each prostate volume doubling (OR, 0.7; 95% CI: 0.5, 0.9). In men who were TPM-negative, the presence of PIN increased the odds of zonal visibility (OR, 3.7; 95% CI: 1.5, 9.1; P = .004). Conclusion An incremental relationship between cancer burden and prostate MRI visibility was observed. Prostatic intraepithelial neoplasia contributed to false-positive MRI findings. ClinicalTrials.gov registration no. NCT01292291 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Harmath in this issue

    Does true Gleason pattern 3 merit its cancer descriptor?

    Get PDF
    Nearly five decades following its conception, the Gleason grading system remains a cornerstone in the prognostication and management of patients with prostate cancer. In the past few years, a debate has been growing whether Gleason score 3 + 3 = 6 prostate cancer is a clinically significant disease. Clinical, molecular and genetic research is addressing the question whether well characterized Gleason score 3 + 3 = 6 disease has the ability to affect the morbidity and quality of life of an individual in whom it is diagnosed. The consequences of treatment of Gleason score 3 + 3 = 6 disease are considerable; few men get through their treatments without sustaining some harm. Further modification of the classification of prostate cancer and dropping the label cancer for Gleason score 3 + 3 = 6 disease might be warranted

    Defining the level of evidence for technology adoption in the localized prostate cancer pathway.

    Get PDF
    New technologies in prostate cancer are attempting to change the current prostate cancer pathway by aiming to reduce harms while maintaining the benefits associated with screening, diagnosis, and treatment. In this article, we discuss the optimal evaluation that new technologies should undergo to provide level 1 evidence typically required to change the practice. With this in mind, we focus on feasible and pragmatic trials that could be delivered in a timely fashion by many centers while retaining primary outcomes that focus on clinically meaningful outcomes

    PROMIS - Prostate MR imaging study:A paired validating cohort study evaluating the role of multi-parametric MRI in men with clinical suspicion of prostate cancer

    Get PDF
    * Background: Transrectal ultrasound-guided prostate biopsies are prone to detection errors. Multi-parametric MRI (MP-MRI) may improve the diagnostic pathway.  * Methods: PROMIS is a prospective validating paired-cohort study that meets criteria for level 1 evidence in diagnostic test evaluation. PROMIS will investigate whether multi-parametric (MP)-MRI can discriminate between men with and without clinically-significant prostate cancer who are at risk prior to first biopsy. Up to 714 men will have MP-MRI (index), 10-12 core TRUS-biopsy (standard) and 5. mm transperineal template mapping (TPM) biopsies (reference). The conduct and reporting of each test will be blinded to the others.  * Results: PROMIS will measure and compare sensitivity, specificity, and positive and negative predictive values of both MP-MRI and TRUS-biopsy against TPM biopsies. The MP-MRI results will be used to determine the proportion of men who could safely avoid biopsy without compromising detection of clinically-significant cancers. For the primary outcome, significant cancer on TPM is defined as Gleason grade >/= 4 + 3 and/or maximum cancer core length of ≥ 6 mm. PROMIS will also assess inter-observer variability among radiologists among other secondary outcomes. Cost-effectiveness of MP-MRI prior to biopsy will also be evaluated. Conclusions: PROMIS will determine whether MP-MRI of the prostate prior to first biopsy improves the detection accuracy of clinically-significant cancer

    Beyond transrectal ultrasound-guided prostate biopsies: available techniques and approaches

    No full text
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Objectives: Recent advances have led to the use of magnetic resonance imaging (MRI) alone or with fusion to transrectal ultrasound (TRUS) images for guiding biopsy of the prostate. Our group sought to develop consensus recommendations regarding MRI-guided prostate biopsy based on currently available literature and expert opinion. Methods: The published literature on the subject of MRI-guided prostate biopsy was reviewed using standard search terms and synthesized and analyzed by four different subgroups from among the authors. The literature was grouped into four categories—MRI-guided biopsy platforms, robotic MRI–TRUS fusion biopsy, template mapping biopsy and transrectal MRI–TRUS fusion biopsy. Consensus recommendations were developed using the Oxford Center for Evidence Based Medicine criteria. Results: There is limited high level evidence available on the subject of MRI-guided prostate biopsy. MRI guidance with or without TRUS fusion can lead to fewer unnecessary biopsies, help identify high-risk (Gleason ≥ 3 + 4) cancers that might have been missed on standard TRUS biopsy and identify cancers in the anterior prostate. There is no apparent significant difference between MRI biopsy platforms. Template mapping biopsy is perhaps the most accurate method of assessing volume and grade of tumor but is accompanied by higher incidence of side effects compared to TRUS biopsy. Conclusions: Magnetic resonance imaging-guided biopsies are feasible and better than traditional ultrasound-guided biopsies for detecting high-risk prostate cancer and anterior lesions. Judicious use of MRI-guided biopsy could enhance diagnosis of clinically significant prostate cancer while limiting diagnosis of insignificant cancer
    corecore