19 research outputs found

    Ocean Wave Energy Converters: Analysis, Modeling, and Simulation. Some case studies

    Get PDF
    Wave energy has much more potential and benefits than other forms of renewable energy. It is more predictable, consistent, and controllable than wind or solar energy. In this way, an adequate infrastructure can be an alternative and also sustainable system for power supply. In this paper, different wave energy conversion mechanisms (buoys, Pelamis, and oysters) have been described. These models are implemented and simulated using the Design Modeller, ANSYS-AQWA, and WEC-SIM applications. The purpose has been to develop a complete simulation of the wave energy converter and discuss its operation. The analysis has been developed in Matlab-Simulink and both regular and irregular waves have been considered. For this, an approximation to the linear waves theory has been used. The results obtained indicate the energy absorbed from the sea waves and also the energy supplied to the power grid. The simulation results estimated with the different WEC models are comparable to the results shown by other research papers. © 2022, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved

    KLK10 exon 3 unmethylated PCR product concentration: a new potential early diagnostic marker in ovarian cancer? - A pilot study

    No full text
    Abstract Background KLK10 exon 3 hypermethylation correlated to tumor-specific lack of KLK10 expression in cancer cell lines and primary tumors. In the present study we investigate the possible role of KLK10 exon 3 methylation in ovarian tumor diagnosis and prognosis. Results Qualitative methylation-specific PCR (MSP) results did not show statistically significant differences in patient group samples (normal and tumor) where all samples were positive only for the unmethylated-specific PCR except for two malignant samples that were either doubly positive (serous carcinoma) or doubly negative (Sertoli-Leydig cell tumor) for the two MSP tests. However, KLK10 exon 3 unmethylated PCR product concentration (ng/μl) showed statistically significant differences in benign and malignant patient group samples; mean ± SD (n): tumor: 0.077 ± 0.035 (14) and 0.047 ± 0.021 (15), respectively, p-value = 0.011; and normal: 0.094 ± 0.039 (7) and 0.046 ± 0.027 (6), respectively, p-value = 0.031. Moreover, ROC curve analysis of KLK10 exon 3 unmethylated PCR product concentration in overall patient group samples showed good diagnostic ability (AUC = 0.778; p-value = 0.002). Patient survival (living and died) showed statistically significant difference according to preoperative serum CA125 concentration (U/ml); median (n): 101.25 (10) and 1252 (5), respectively, p-value = 0.037, but not KLK10 exon 3 unmethylated PCR product concentration (ng/μl) in overall malignant patient samples; mean ± SD (n): 0.042 ± 0.015 (14) and 0.055 ± 0.032 (7), p-value = 0.228. Conclusion To the best of our knowledge, this is the first report on KLK10 exon 3 unmethylated PCR product concentration as potential early epigenetic diagnostic marker in primary ovarian tumors. Taken into account the limitations in our study (small sample size and semi-quantitative PCR product analysis) further studies are strongly recommended

    Synthesis and Characterization of CuFe2O4 Nanoparticles Modified with Polythiophene: Applications to Mercuric Ions Removal

    No full text
    In this research, CuFe2O4 nanoparticles were synthesized by co-precipitation methods and modified by coating with thiophene for removal of Hg(II) ions from aqueous solution. CuFe2O4 nanoparticles, with and without thiophene, were characterized by x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), energy dispersive x-ray (EDX), high-resolution transmission electron microscopy (HRTEM) and Brunauer–Emmett–Teller (BET). Contact time, adsorbent dose, solution pH, adsorption kinetics, adsorption isotherm and recyclability were studied. The maximum adsorption capacity towards Hg2+ ions was 7.53 and 208.77 mg/g for CuFe2O4 and CuFe2O4@Polythiophene composite, respectively. Modification of CuFe2O4 nanoparticles with thiophene revealed an enhanced adsorption towards Hg2+ removal more than CuFe2O4 nanoparticles. The promising adsorption performance of Hg2+ ions by CuFe2O4@Polythiophene composite generates from soft acid–soft base strong interaction between sulfur group of thiophene and Hg(II) ions. Furthermore, CuFe2O4@Polythiophene composite has both high stability and reusability due to its removal efficiency, has no significant decrease after five adsorption–desorption cycles and can be easily removed from aqueous solution by external magnetic field after adsorption experiments took place. Therefore, CuFe2O4@Polythiophene composite is applicable for removal Hg(II) ions from aqueous solution and may be suitable for removal other heavy metals

    Strength-ductility trade-off via SiC nanoparticle dispersion in A356 aluminium matrix

    No full text
    A process was developed to disperse β-SiC nanoparticles (NPs), with a high propensity to agglomerate, within a matrix of A356 aluminum alloy. A suitable dispersion of 1 wt% SiC NPs in the A356 matrix was obtained through a hybrid process including a solid-state modification on the surface of the NPs, a two-step stirring process in the semi-solid and then the liquid-state, and a final hot-rolling process for fragmentation of the brittle eutectic silicon phase and porosity elimination. Titanium and nickel where used as the nanoparticle SiC surface modifiers. Both modifiers were found to improve the mechanical properties of the resulting material, however, the highest improvement was found from the nickel surface modification. For the nickel modification, compared to the non- reinforced rolled alloy, more than a 77%, 85%, and 70% increase in ultimate tensile strength (UTS), yield strength (YS), and strain % at the break, respectively were found with respect to the unreinforced rolled A356. For the rolled nanocomposite containing 1 wt % SiCnp and nickel modification, an average YS, UTS, and strain % at the break of 277 MPa, 380 MPa, and 16.4% were obtained, respectively, which are unique and considerable property improvements for A356 alloy
    corecore