904 research outputs found

    Ultrafast Photoconductivity Measurements of a Thermoelectric Nanocomposite: Tellurium Nanowire/PEDOT:PSS

    Get PDF
    This project explores the conductivity properties of a novel thermoelectric hybrid material (Tellurium nanowires in a conducting polymer PEDOT:PSS) using both static and time-resolved conductivity measurements. We find that the effect of the conducting polymer PEDOT is weak and that the observed differences in conductivity measurements between the hybrid and non-hybrid material are most likely caused by the different sizes of the nanowires

    The barium iron ruthenium oxide system

    Get PDF
    In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given

    Heavy Quark Fluorescence

    Get PDF
    Heavy hadrons containing heavy quarks (for example, Upsilon-mesons) feature a scale separation between the heavy quark mass (about 4.5 GeV for the b-quark) and the QCD scale (about 0.3 GeV}) that controls effective masses of lighter constituents. Therefore, as in ordinary molecules, the de-excitation of the lighter, faster degrees of freedom leaves the velocity distribution of the heavy quarks unchanged, populating the available decay channels in qualitatively predictable ways. Automatically an application of the Franck-Condon principle of molecular physics explains several puzzling results of Upsilon(5S) decays as measured by the Belle collaboration, such as the high rate of Bs*-anti Bs* versus Bs*-anti Bs production, the strength of three-body B-anti B + pion decays, or the dip in B momentum shown in these decays. We argue that the data is showing the first Sturm-Liouville zero of the Upsilon(5S) quantum mechanical squared wavefunction, and providing evidence for a largely b-anti b composition of this meson.Comment: 4 pages, 4 figures, Figure 2 updated and some typos corrected. To be published in Physical Review Letter

    Improved Semileptonic Form Factor Calculations in Lattice QCD

    Full text link
    We investigate the computational efficiency of two stochastic based alternatives to the Sequential Propagator Method used in Lattice QCD calculations of heavy-light semileptonic form factors. In the first method, we replace the sequential propagator, which couples the calculation of two of the three propagators required for the calculation, with a stochastic propagator so that the calculations of all three propagators are independent. This method is more flexible than the Sequential Propagator Method but introduces stochastic noise. We study the noise to determine when this method becomes competitive with the Sequential Propagator Method, and find that for any practical calculation it is competitive with or superior to the Sequential Propagator Method. We also examine a second stochastic method, the so-called ``one-end trick", concluding it is relatively inefficient in this context. The investigation is carried out on two gauge field ensembles, using the non-perturbatively improved Wilson-Sheikholeslami-Wohlert action with N_f=2 mass-degenerate sea quarks. The two ensembles have similar lattice spacings but different sea quark masses. We use the first stochastic method to extract O(a){\mathcal O}(a)-improved, matched lattice results for the semileptonic form factors on the ensemble with lighter sea quarks, extracting f_+(0)

    Charm quark system at the physical point of 2+1 flavor lattice QCD

    Full text link
    We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 323×6432^3 \times 64 lattice. The dynamical up-down and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a1=2.194(10)a^{-1}=2.194(10) GeV and the spatial extent L=2.88(1)L=2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m_{\rm charm}^{\msbar}(\mu = m_{\rm charm}^{\msbar}) = 1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order αs2f(mQa)(aΛQCD)\alpha_s^2 f(m_Q a)(a \Lambda_{QCD}), which is estimated to be a percent level if the factor f(mQa)f(m_Q a) analytic in mQam_Q a is of order unity. Our results for the charmed and charmed-strange meson decay constants are fD=226(6)(1)(5)f_D=226(6)(1)(5) MeV, fDs=257(2)(1)(5)f_{D_s}=257(2)(1)(5) MeV, again up to the heavy quark errors of order αs2f(mQa)(aΛQCD)\alpha_s^2 f(m_Q a)(a \Lambda_{QCD}). Combined with the CLEO values for the leptonic decay widths, these values yield Vcd=0.205(6)(1)(5)(9)|V_{cd}| = 0.205(6)(1)(5)(9), Vcs=1.00(1)(1)(3)(3)|V_{cs}| = 1.00(1)(1)(3)(3), where the last error is on account of the experimental uncertainty of the decay widths.Comment: 16 pages, 12 figure

    Core reconstruction in pseudopotential calculations

    Full text link
    A new method is presented for obtaining all-electron results from a pseudopotential calculation. This is achieved by carrying out a localised calculation in the region of an atomic nucleus using the embedding potential method of Inglesfield [J.Phys. C {\bf 14}, 3795 (1981)]. In this method the core region is \emph{reconstructed}, and none of the simplifying approximations (such as spherical symmetry of the charge density/potential or frozen core electrons) that previous solutions to this problem have required are made. The embedding method requires an accurate real space Green function, and an analysis of the errors introduced in constructing this from a set of numerical eigenstates is given. Results are presented for an all-electron reconstruction of bulk aluminium, for both the charge density and the density of states.Comment: 14 pages, 5 figure

    Interatomic potentials for atomistic simulations of the Ti-Al system

    Full text link
    Semi-empirical interatomic potentials have been developed for Al, alpha-Ti, and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large database of experimental as well as ab-initio data. The ab-initio calculations were performed by the linear augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide reasonable description of the lattice thermal expansion, demonstrating their usefulness in the molecular dynamics or Monte Carlo studies at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in gamma-TiAl calculated with the EAM potential is in a fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in gamma-TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that gamm-TiAl is an antisite disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press

    A qualitative study on the effects of psychoactive substance use upon artistic creativity

    Get PDF
    Background: Psychoactive substance use has often been claimed to help generate and facilitate the artistic creative process. Aims: The present study explored the role of artists’ substance use in their creative processes and their efforts to balance between enhancement and relaxation. Methods: Semi-structured interviews concerning the artistic creative process and the role of psychoactive substance use were recorded with 72 artists and analyzed using content analysis. The participants were classified according to their substance use in three groups (Cannabis Group, Alcohol Group, and Control Group). Results: Results show that both alcohol and cannabis were used to facilitate creativity and the emotional states that are necessary for the artistic creative process. Participants in the Control group reported that listening to music might function as a mind-altering tool. It was also found that for some artists, substance use is not only characteristic to creation, but it is also part of their everyday lives. Conclusion: Artists are aware of the balancing phenomenon during the artistic creative process. Whether psychoactive substance(s) or other environmental stimuli (such as music) are used to reach the required effect appears to depend upon the individual

    Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices

    Get PDF
    Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle
    corecore