493 research outputs found
Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry
We consider experimentally the instability and mass transport of a
porous-medium flow in a Hele-Shaw geometry. In an initially stable
configuration, a lighter fluid (water) is located over a heavier fluid
(propylene glycol). The fluids mix via diffusion with some regions of the
resulting mixture being heavier than either pure fluid. Density-driven
convection occurs with downward penetrating dense fingers that transport mass
much more effectively than diffusion alone. We investigate the initial
instability and the quasi steady state. The convective time and velocity
scales, finger width, wave number selection, and normalized mass transport are
determined for 6,000<Ra<90,000. The results have important implications for
determining the time scales and rates of dissolution trapping of carbon dioxide
in brine aquifers proposed as possible geologic repositories for sequestering
carbon dioxide.Comment: 4 page, 3 figure
A long-established invasive species alters the functioning of benthic biofilms in lakes
Invasive species often transform environmental conditions, exclude native species and alter ecosystem functioning, including key ecosystem processes underpinning nutrient and energy cycles. However, such impacts have been most documented during periods of invasive species dominance; their influences on functioning at lower relative abundances and after long-term establishment are less well-known.We investigated the effects of Elodea canadensis, a macrophyte native to North America with a long invasion history in many regions of the world, on the biomass accrual and metabolism of littoral zone biofilms growing on organic and inorganic substrates.We deployed nutrient diffusing substrates (NDS) in 18 replicate transects distributed across six lakes, comprising three invaded by E. canadensis and three uninvaded reference lakes. NDS were amended with nitrogen (N), phosphorus (P) or N + P together, or were deployed as unamended controls. E. canadensis relative abundance varied widely in the invaded transects, ranging from 13% to 93% of all macrophyte cover.On control substrates, algal biomass, quantified as Chlorophyll-a, and gross primary production (GPP) were 42% and 78% greater in the invaded compared to uninvaded lakes, respectively. Respiration rates, attributable to responses of both autotrophs and heterotrophs, were 45% greater on control substrates in invaded lakes. By contrast, N-limitation of both biofilm GPP and respiration was 25% and 35% greater in uninvaded compared with invaded lakes.There was no evidence for differences in nutrients, light availability or grazing pressure between invaded and uninvaded transects. Rather, the observed differences in metabolism suggest that the presence of E. canadensis increases availability of N at local scales, reducing N-limitation of biofilms and resulting in elevated rates of biofilm productivity.Our results demonstrate that invasive elodeids might have significant impacts on biofilms and processes associated with the cycling of nutrients, even when long-established and present at lower relative abundances
Fragility and hysteretic creep in frictional granular jamming
The granular jamming transition is experimentally investigated in a
two-dimensional system of frictional, bi-dispersed disks subject to
quasi-static, uniaxial compression at zero granular temperature. Currently
accepted results show the jamming transition occurs at a critical packing
fraction . In contrast, we observe the first compression cycle exhibits
{\it fragility} - metastable configuration with simultaneous jammed and
un-jammed clusters - over a small interval in packing fraction (). The fragile state separates the two conditions that define
with an exponential rise in pressure starting at and an exponential
fall in disk displacements ending at . The results are explained
through a percolation mechanism of stressed contacts where cluster growth
exhibits strong spatial correlation with disk displacements. Measurements with
several disk materials of varying elastic moduli and friction coefficients
, show friction directly controls the start of the fragile state, but
indirectly controls the exponential slope. Additionally, we experimentally
confirm recent predictions relating the dependence of on . Under
repetitive loading (compression), the system exhibits hysteresis in pressure,
and the onset increases slowly with repetition number. This friction
induced hysteretic creep is interpreted as the granular pack's evolution from a
metastable to an eventual structurally stable configuration. It is shown to
depend upon the quasi-static step size which provides the only
perturbative mechanism in the experimental protocol, and the friction
coefficient which acts to stabilize the pack.Comment: 12 pages, 10 figure
Unilateral Cleavage Furrows in Multinucleate Cells
Multinucleate cells can be produced inDictyosteliumby electric pulse-induced fusion. In these cells, unilateral cleavage furrows are formed at spaces between areas that are controlled by aster microtubules. A peculiarity of unilateral cleavage furrows is their propensity to join laterally with other furrows into rings to form constrictions. This means cytokinesis is biphasic in multinucleate cells, the final abscission of daughter cells being independent of the initial direction of furrow progression. Myosin-II and the actin filament cross-linking protein cortexillin accumulate in unilateral furrows, as they do in the normal cleavage furrows of mononucleate cells. In a myosin-II-null background, multinucleate or mononucleate cells were produced by cultivation either in suspension or on an adhesive substrate. Myosin-II is not essential for cytokinesis either in mononucleate or in multinucleate cells but stabilizes and confines the position of the cleavage furrows. In fused wild-type cells, unilateral furrows ingress with an average velocity of 1.7 mu m x min(-1), with no appreciable decrease of velocity in the course of ingression. In multinucleate myosin-II-null cells, some of the furrows stop growing, thus leaving space for the extensive broadening of the few remaining furrows
Frustration and Melting of Colloidal Molecular Crystals
Using numerical simulations we show that a variety of novel colloidal
crystalline states and multi-step melting phenomena occur on square and
triangular two-dimensional periodic substrates. At half-integer fillings
different kinds of frustration effects can be realized. A two-step melting
transition can occur in which individual colloidal molecules initially rotate,
destroying the overall orientational order, followed by the onset of interwell
colloidal hopping, in good agreement with recent experiments.Comment: 6 pages, 3 postscript figures. Procedings of International Conference
on Strongly Coupled Coulomb Systems, Santa Fe, 200
Stretching fields and mixing near the transition to nonperiodic two-dimensional flow
Although time-periodic fluid flows sometimes produce mixing via Lagrangian chaos, the additional contribution to mixing caused by nonperiodicity has not been quantified experimentally. Here, we do so for a quasi-two-dimensional flow generated by electromagnetic forcing. Several distinct measures of mixing are found to vary continuously with the Reynolds number, with no evident change in magnitude or slope at the onset of nonperiodicity. Furthermore, the scaled probability distributions of the mean Lyapunov exponent have the same form in the periodic and nonperiodic flow states
Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses
Publisher Copyright: © 2022, The Author(s).Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world.Peer reviewe
Knots and Random Walks in Vibrated Granular Chains
We study experimentally statistical properties of the opening times of knots
in vertically vibrated granular chains. Our measurements are in good
qualitative and quantitative agreement with a theoretical model involving three
random walks interacting via hard core exclusion in one spatial dimension. In
particular, the knot survival probability follows a universal scaling function
which is independent of the chain length, with a corresponding diffusive
characteristic time scale. Both the large-exit-time and the small-exit-time
tails of the distribution are suppressed exponentially, and the corresponding
decay coefficients are in excellent agreement with the theoretical values.Comment: 4 pages, 5 figure
- …