3,131 research outputs found
Pseudoscalar Meson Mixing in Effective Field Theory
We show that for any effective field theory of colorless meson fields, the
mixing schemes of particle states and decay constants are not only related but
also determined exclusively by the kinetic and mass Lagrangian densities. In
the general case, these are bilinear in terms of the intrinsic fields and
involve non-diagonal kinetic and mass matrices. By applying three consecutive
steps this Lagrangian can be reduced into the standard quadratic form in terms
of the physical fields. These steps are : (i) the diagonalization of the
kinetic matrix, (ii) rescaling of the fields, and (iii) the diagonalization of
the mass matrix. In case, where the dimensions of the non-diagonal kinetic and
mass sub-matrices are respectively, and , this procedure
leads to mixing schemes which involve angles and
field rescaling parameters. This observation holds true irrespective with the
type of particle interactions presumed. The commonly used mixing schemes,
correspond to a proper choice of the kinetic and mass matrices, and are derived
as special cases. In particular, - mixing, requires one angle, if
and only if, the kinetic term with the intrinsic fields has a quadratic form.Comment: REVTeX, 6 page
Mirror matter admixtures in K_L \to \gamma\gamma
Based on possible albeit tiny, admixtures of mirror matter in ordinary mesons
we study the K_L \to \gamma\gamma transition. We find that this process can be
described with a small SU(3) symmetry breaking of only 3%. We also determine
the eta-eta' mixing angle and the pseudoscalar decay constants. The results for
these parameters are consistent with some obtained in the literature. They
favor two recent determinations; one based on two analytical constraints, and
another one based on next-to-leading order power corrections
and mesons in the Dyson-Schwinger approach at finite temperature
We study the temperature dependence of the pseudoscalar meson properties in a
relativistic bound-state approach exhibiting the chiral behavior mandated by
QCD. Concretely, we adopt the Dyson-Schwinger approach with a rank-2 separable
model interaction. After extending the model to the strange sector and fixing
its parameters at zero temperature, T=0, we study the T-dependence of the
masses and decay constants of all ground-state mesons in the pseudoscalar
nonet. Of chief interest are and . The influence of the QCD
axial anomaly on them is successfully obtained through the Witten-Veneziano
relation at T=0. The same approach is then extended to T>0, using lattice QCD
results for the topological susceptibility. The most conspicuous finding is an
increase of the mass around the chiral restoration temperature
, which would suggest a suppression of production in
relativistic heavy-ion collisions. The increase of the mass may
also indicate that the extension of the Witten-Veneziano relation to finite
temperatures becomes unreliable around and above . Possibilities of
an improved treatment are discussed.Comment: 13 pages, 15 figure
Bloodmeal digestion by strains of Anopheles stephensi Liston (Diptera: Culicidae) of differing susceptibility to Plasmodium falciparum
Blood digestion was studied in strains of Anopheles stephensi which had been genetically selected for either refractoriness or susceptibility to infection by Plasmodium falciparum. Females of the refractory Pb3—9a strain ingested more blood than selected (Sda-500) and unselected (Punjab) susceptible females and began to degrade the haemoglobin soon after feeding. In susceptible females, haemoglobin degradation started only after a significant post-feeding lag period. Total protein content of the midgut after the bloodmeal was correspondingly higher for refractory than for susceptible females, but absolute and relative rates of protein degradation were not significantly different between the different mosquito strains. Bloodmeal induction of midgut trypsin activity and the maximal trypsin activity were the same for the different strains. The residual aminopeptidase activity and its relative post-feeding activity (enzyme units per midgut) were significantly higher in refractory females. However, when converting to specific aminopeptidase activity, no differences between strains were evident. The results indicate that both the early initiation of haemoglobin degradation and higher aminopeptidase activity in the Pb3—9a refractory strain are important in the limitation of parasite development within the mosquito midgut, whereas trypsin plays no role in this proces
Local Measurement of Current Density by Magneto-Optical Current Reconstruction in Normally and Overpressure Processed Bi-2223 Tapes
Magneto-optical current reconstruction has been used for detailed analysis of
the local critical current density (Jc) variation in monocore Bi-2223 tapes. We
find, even in high quality tapes with bulk transport Jc ~ 40 kA/cm^2 (77K, 0T),
that there exist local regions which possess current densities of more than 200
kA/cm^2. Overpressure processing at 148 bar significantly improved Jc to 48
kA/cm^2 by improving the connectivity. For the overpressure-processed sample we
find that the current distribution is more uniform and that the maximum local
current density at 77 K is increased almost to 300 kA/cm^2.Comment: Presented at Applied Superconductivity Conference, Houston, August
4th -9th, 200
Massive quenched galaxies at z~0.7 retain large molecular gas reservoirs
The physical mechanisms that quench star formation, turning blue star-forming
galaxies into red quiescent galaxies, remain unclear. In this Letter, we
investigate the role of gas supply in suppressing star formation by studying
the molecular gas content of post-starburst galaxies. Leveraging the wide area
of the SDSS, we identify a sample of massive intermediate-redshift galaxies
that have just ended their primary epoch of star formation. We present ALMA
CO(2-1) observations of two of these post-starburst galaxies at z~0.7 with M* ~
2x10^11 Msun. Their molecular gas reservoirs of (6.4 +/- 0.8) x 10^9 Msun and
(34.0 +/- 1.6) x 10^9 Msun are an order of magnitude larger than
comparable-mass galaxies in the local universe. Our observations suggest that
quenching does not require the total removal or depletion of molecular gas, as
many quenching models suggest. However, further observations are required both
to determine if these apparently quiescent objects host highly obscured star
formation and to investigate the intrinsic variation in the molecular gas
properties of post-starburst galaxies.Comment: Accepted for publication in ApJ Letters (6 pages, 5 figures
The compact Q=2 Abelian Higgs model in the London limit: vortex-monopole chains and the photon propagator
The confining and topological properties of the compact Abelian Higgs model
with doubly-charged Higgs field in three space-time dimensions are studied. We
consider the London limit of the model. We show that the monopoles are forming
chain-like structures (kept together by ANO vortices) the presence of which is
essential for getting simultaneously permanent confinement of singly-charged
particles and breaking of the string spanned between doubly-charged particles.
In the confinement phase the chains are forming percolating clusters while in
the deconfinement (Higgs) phase the chains are of finite size. The described
picture is in close analogy with the synthesis of the Abelian monopole and the
center vortex pictures in confining non--Abelian gauge models. The screening
properties of the vacuum are studied by means of the photon propagator in the
Landau gauge.Comment: 27 pages, 37 figure
Strongly Time-Variable Ultra-Violet Metal Line Emission from the Circum-Galactic Medium of High-Redshift Galaxies
We use cosmological simulations from the Feedback In Realistic Environments
(FIRE) project, which implement a comprehensive set of stellar feedback
processes, to study ultra-violet (UV) metal line emission from the
circum-galactic medium of high-redshift (z=2-4) galaxies. Our simulations cover
the halo mass range Mh ~ 2x10^11 - 8.5x10^12 Msun at z=2, representative of
Lyman break galaxies. Of the transitions we analyze, the low-ionization C III
(977 A) and Si III (1207 A) emission lines are the most luminous, with C IV
(1548 A) and Si IV (1394 A) also showing interesting spatially-extended
structures. The more massive halos are on average more UV-luminous. The UV
metal line emission from galactic halos in our simulations arises primarily
from collisionally ionized gas and is strongly time variable, with
peak-to-trough variations of up to ~2 dex. The peaks of UV metal line
luminosity correspond closely to massive and energetic mass outflow events,
which follow bursts of star formation and inject sufficient energy into
galactic halos to power the metal line emission. The strong time variability
implies that even some relatively low-mass halos may be detectable. Conversely,
flux-limited samples will be biased toward halos whose central galaxy has
recently experienced a strong burst of star formation. Spatially-extended UV
metal line emission around high-redshift galaxies should be detectable by
current and upcoming integral field spectrographs such as the Multi Unit
Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web
Imager (KCWI).Comment: 16 pages, 8 figures, accepted for publication in MNRA
Modification of Kawai model about the mixing of the pseudoscalar mesons
The Kawai model describing the glueball-quarkonia mixing is modified. The
mixing of , and is re-investigated based on
the modified Kawai model. The glueball-quarkonia content of the three states is
determined from a fit to the data of the electromagnetic decays involving
, . Some predictions about the electromagnetic decays
involving are presented.Comment: revtex 8 page
- …