1,690 research outputs found

    Probing the Fermi surface by positron annihilation and Compton scattering

    Get PDF
    Positron annihilation and Compton scattering are important probes of the Fermi surface. Relying on conservation of energy and momentum, being bulk sensitive and not limited by short electronic mean-free-paths, they can provide unique information in circumstances when other methods fail. Using a variety of examples, their contribution to knowledge about the electronic structure of a wide range of materials is demonstrated

    Fermi surface of the colossal magnetoresistance perovskite La_{0.7}Sr_{0.3}MnO_{3}

    Full text link
    Materials that exhibit colossal magnetoresistance (CMR) are currently the focus of an intense research effort, driven by the technological applications that their sensitivity lends them to. Using the angular correlation of photons from electron-positron annihilation, we present a first glimpse of the Fermi surface of a material that exhibits CMR, supported by ``virtual crystal'' electronic structure calculations. The Fermi surface is shown to be sufficiently cubic in nature that it is likely to support nesting.Comment: 5 pages, 5 PS figure

    Experimental determination of the state-dependent enhancement of the electron-positron momentum density in solids

    Full text link
    The state-dependence of the enhancement of the electron-positron momentum density is investigated for some transition and simple metals (Cr, V, Ag and Al). Quantitative comparison with linearized muffin-tin orbital calculations of the corresponding quantity in the first Brillouin zone is shown to yield a measurement of the enhancement of the s, p and d states, independent of any parameterizations in terms of the electron density local to the positron. An empirical correction that can be applied to a first-principles state-dependent model is proposed that reproduces the measured state-dependence very well, yielding a general, predictive model for the enhancement of the momentum distribution of positron annihilation measurements, including those of angular correlation and coincidence Doppler broadening techniques

    Alloparental behaviour and long-term costs of mothers tolerating other members of the group in a plurally breeding mammal

    No full text
    Cooperative-breeding studies tend to focus on a few alloparental behaviours in highly cooperative species exhibiting high reproductive skew and the associated short-term, but less frequently long-term, fitness costs. We analysed a suite of alloparental behaviours (assessed via filming) in a kin-structured, high-density population of plurally breeding European badgers, Meles meles, which are not highly cooperative. Group members, other than mothers, performed alloparental behaviour; however, this was not correlated with their relatedness to within-group young. Furthermore, mothers babysat, allogroomed cubs without reciprocation, and allomarked cubs more than other members of the group (controlling for observation time). For welfare reasons, we could not individually mark cubs; however, the number observed pre-independence never exceeded that trapped. All 24 trapped cubs, in three filmed groups, were assigned both parents using 22 microsatellites. Mothers may breed cooperatively, as the time they babysat their assigned, or a larger, litter size did not differ. Furthermore, two mothers probably allonursed, as they suckled more cubs than their assigned litter size. An 18-year genetic pedigree, however, detected no short-term (litter size; maternal survival to the following year) or long-term (offspring breeding probability; offspring lifetime breeding success) fitness benefits with more within-group mothers or other members of the group. Rather, the number of other members of the group (excluding mothers) correlated negatively with long-term fitness. Mothers may tolerate other members of the group, as nonbreeders undertook more digging. Our study highlights that alloparental care varies on a continuum from that seen in this high-density badger population, where alloparenting behaviour is minimal, through to species where alloparental care is common and provides fitness benefits. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved

    Fermi surface of an important nano-sized metastable phase: Al3_3Li

    Full text link
    Nanoscale particles embedded in a metallic matrix are of considerable interest as a route towards identifying and tailoring material properties. We present a detailed investigation of the electronic structure, and in particular the Fermi surface, of a nanoscale phase (L12L1_2 Al3_3Li) that has so far been inaccessible with conventional techniques, despite playing a key role in determining the favorable material properties of the alloy (Al\nobreakdash-9 at. %\nobreakdash-Li). The ordered precipitates only form within the stabilizing Al matrix and do not exist in the bulk; here, we take advantage of the strong positron affinity of Li to directly probe the Fermi surface of Al3_3Li. Through comparison with band structure calculations, we demonstrate that the positron uniquely probes these precipitates, and present a 'tuned' Fermi surface for this elusive phase

    Three-dimensional in situ observations of compressive damage mechanisms in syntactic foam using X-ray microcomputed tomography

    Get PDF
    Royal Society Grant number RG140680 Lloyd's Register Foundation (GB) Oil and Gas Academy of Scotland Open access via Springer Compact AgreementPeer reviewedPublisher PD

    Fermi Surface as the Driving Mechanism for Helical Antiferromagnetic Ordering in Gd-Y Alloys

    Full text link
    The first direct experimental evidence for the Fermi surface (FS) driving the helical antiferromagnetic ordering in a gadolinium-yttrium alloy is reported. The presence of a FS sheet capable of nesting is revealed, and the nesting vector associated with the sheet is found to be in excellent agreement with the periodicity of the helical ordering.Comment: 4 pages, 4 figure

    Female teat size is a reliable indicator of annual breeding success in European badgers: Genetic validation

    No full text
    Assessing which females have bred successfully is a central requirement in many ecological field studies, providing an estimate of the effective female population size. Researchers have applied teat measurements previously to assess whether females, in a variety of mammalian species, have bred; however, this technique has not been validated genetically. Furthermore, several analytical techniques are available to classify individuals, but their misclassification rates have not been compared. We used 22 microsatellite loci to assign maternity, with 95% confidence, within a high-density population of European badgers Meles meles, as plural and subterranean breeding means that maternity cannot be inferred from behavioural observations. The teat lengths and diameters of 136 females, measured May–July 1994–2005, from social groups in which all offspring were assigned a mother, were reliable indicators of recent breeding success. A Generalised Linear Mixed Model (GLMM) classified both breeding and non-breeding females with lower error rates than discriminant analyses and crude teat-size criteria. The GLMM model logit probability = −20 + 1.8 month + 1.6 mean teat length + 1.0 mean teat diameter can be applied quickly in the field to assess the probability with which a female badger should be assigned maternity. This is a low-cost measure which, after validation, could be used in other badger or mammalian populations to assess the breeding success of females. This may be a particularly useful welfare tool for veterinary practitioners, especially during badger culls
    corecore