1,325 research outputs found
Recommended from our members
Femtosecond Pump-Probe Diagnostics Of Preformed Plasma Channels
We report on recent ultrafast pump-probe experiments 28 in He plasma waveguides using 800 nm, 80 fs pump pulses of 0.2 x 1018 W/cm2 peak guided intensity, and single orthogonally-polarized 800 nm probe pulses with similar to0.1% of pump intensity. The main results are: (1) We observe frequency-domain interference between the probe and a weak, depolarized component of the pump that differs substantially in mode shape from the injected pump pulse; (2) we observe spectral blue-shifts in the transmitted probe that are not evident in the transmitted pump. The evidence indicates that pump depolarization and probe blue-shifts both originate near the channel entrance.Physic
Recommended from our members
Development Of Third Harmonic Generation As A Short Pulse Probe Of Shock Heated Material
We are studying high-pressure laser produced shock waves in silicon (100). To examine the material dynamics, we are performing pump-probe style experiments utilizing 600 ps and 40 fs laser pulses from a Ti:sapphire laser. Two-dimensional interferometry reveals information about the shock breakout, while third harmonic light generated at the rear surface is used to infer the crystalline state of the material as a function of time. Sustained third harmonic generation (THG) during a similar to 100 kbar shock breakout indicate that the rear surface remains crystalline for at least 3 ns. However, a decrease in THG during a similar to 300 kbar shock breakout suggests a different behavior, which could include a change in crystalline structure.Mechanical Engineerin
Multi-GeV Electron Generation Using Texas Petawatt Laser
We present simulation results and experimental setup for multi-GeV electron generation by a laser plasma wake field accelerator (LWFA) driven by the Texas Petawatt (TPW) laser. Simulations show that, in plasma of density n(e) = 2 - 4 x cm(-3), the TPW laser pulse (1.1 PW, 170 fs) can self-guide over 5 Rayleigh ranges, while electrons self-injected into the LWFA can accelerate up to 7 GeV. Optical diagnostic methods employed to observe the laser beam self-guiding, electron trapping and plasma bubble formation and evolution are discussed. Electron beam diagnostics, including optical transition radiation (OTR) and electron gamma ray shower (EGS) generation, are discussed as well.Physic
DC-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si(001)-SiO interfaces
The mechanism of DC-Electric-Field-Induced Second-Harmonic (EFISH) generation
at weakly nonlinear buried Si(001)-SiO interfaces is studied experimentally
in planar Si(001)-SiO-Cr MOS structures by optical second-harmonic
generation (SHG) spectroscopy with a tunable Ti:sapphire femtosecond laser. The
spectral dependence of the EFISH contribution near the direct two-photon
transition of silicon is extracted. A systematic phenomenological model of the
EFISH phenomenon, including a detailed description of the space charge region
(SCR) at the semiconductor-dielectric interface in accumulation, depletion, and
inversion regimes, has been developed. The influence of surface quantization
effects, interface states, charge traps in the oxide layer, doping
concentration and oxide thickness on nonlocal screening of the DC-electric
field and on breaking of inversion symmetry in the SCR is considered. The model
describes EFISH generation in the SCR using a Green function formalism which
takes into account all retardation and absorption effects of the fundamental
and second harmonic (SH) waves, optical interference between field-dependent
and field-independent contributions to the SH field and multiple reflection
interference in the SiO layer. Good agreement between the phenomenological
model and our recent and new EFISH spectroscopic results is demonstrated.
Finally, low-frequency electromodulated EFISH is demonstrated as a useful
differential spectroscopic technique for studies of the Si-SiO interface in
silicon-based MOS structures.Comment: 31 pages, 14 figures, 1 table, figures are also available at
http://kali.ilc.msu.su/articles/50/efish.ht
Sum Rules for Multi-Photon Spectroscopy of Ions in Finite Symmetry
Models describing one- and two-photon transitions for ions in crystalline
environments are unified and extended to the case of parity-allowed and parity-
forbidden p-photon transitions. The number of independent parameters for
characterizing the polarization dependence is shown to depend on an ensemble of
properties and rules which combine symmetry considerations and physical models.Comment: 16 pages, Tex fil
Incorporating expression data in metabolic modeling: a case study of lactate dehydrogenase
Integrating biological information from different sources to understand
cellular processes is an important problem in systems biology. We use data from
mRNA expression arrays and chemical kinetics to formulate a metabolic model
relevant to K562 erythroleukemia cells. MAP kinase pathway activation alters
the expression of metabolic enzymes in K562 cells. Our array data show changes
in expression of lactate dehydrogenase (LDH) isoforms after treatment with
phorbol 12-myristate 13-acetate (PMA), which activates MAP kinase signaling. We
model the change in lactate production which occurs when the MAP kinase pathway
is activated, using a non-equilibrium, chemical-kinetic model of homolactic
fermentation. In particular, we examine the role of LDH isoforms, which
catalyze the conversion of pyruvate to lactate. Changes in the isoform ratio
are not the primary determinant of the production of lactate. Rather, the total
concentration of LDH controls the lactate concentration.Comment: In press, Journal of Theoretical Biology. 27 pages, 9 figure
Effectiveness of mobile-phone short message service (SMS) reminders for ophthalmology outpatient appointments: Observational study
Abstract Background Non-attendance for hospital outpatient appointments is a significant problem in many countries. It causes suboptimal use of clinical and administrative staff and financial losses, as well as longer waiting times. The use of Short Message Service (SMS) appointment reminders potentially offers a cost-effective and time-efficient strategy to decrease non-attendance and so improve the efficiency of outpatient healthcare delivery. Methods An SMS text message was sent to patients with scheduled appointments between April and September 2006 in a hospital ophthalmology department in London, reminding them of their appointments. This group acted as the intervention group. Controls were patients with scheduled ophthalmology appointments who did not receive an SMS or any alternative reminder. Results During the period of the study, 11.2% (50/447) of patients who received an SMS appointment reminder were non-attenders, compared to 18.1% (1720/9512) who did not receive an SMS reminder. Non-attendance rates were 38% lower in patients who received an SMS reminder than in patients who did not receive a reminder (RR of non-attendance = 0.62; 95% CI = 0.48 – 0.80). Conclusion The use of SMS reminders for ophthalmology outpatient appointments was associated with a reduction of 38% in the likelihood of patients not attending their appointments, compared to no appointment reminder. The use of SMS reminders may also be more cost-effective than traditional appointment reminders and require less labour. These findings should be confirmed with a more rigorous study design before a wider roll-out.</p
- …
