827 research outputs found

    Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice

    Get PDF
    Determining the forces that shape diversity in host-associated bacterial communities is critical to understanding the evolution and maintenance of metaorganisms. To gain deeper understanding of the role of host genetics in shaping gut microbial traits, we employed a powerful genetic mapping approach using inbred lines derived from the hybrid zone of two incipient house mouse species. Furthermore, we uniquely performed our analysis on microbial traits measured at the gut mucosal interface, which is in more direct contact with host cells and the immune system. Several mucosa-associated bacterial taxa have high heritability estimates, and interestingly, 16S rRNA transcript-based heritability estimates are positively correlated with cospeciation rate estimates. Genome-wide association mapping identifies 428 loci influencing 120 taxa, with narrow genomic intervals pinpointing promising candidate genes and pathways. Importantly, we identified an enrichment of candidate genes associated with several human diseases, including inflammatory bowel disease, and functional categories including innate immunity and G-protein-coupled receptors. These results highlight key features of the genetic architecture of mammalian host-microbe interactions and how they diverge as new species form

    Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion

    Get PDF
    BACKGROUND: HIV envelope glycoprotein (Env)-mediated fusion is driven by the concerted coalescence of the HIV gp41 N-helical and C-helical regions, which results in the formation of 6 helix bundles. Kinetics of HIV Env-mediated fusion is an important determinant of sensitivity to entry inhibitors and antibodies. However, the parameters that govern the HIV Env fusion cascade have yet to be fully elucidated. We address this issue by comparing the kinetics HIV-1(IIIB )Env with those mediated by HIV-2 from two strains with different affinities for CD4 and CXCR4. RESULTS: HIV-1 and HIV-2 Env-mediated cell fusion occurred with half times of about 60 and 30 min, respectively. Binding experiments of soluble HIV gp120 proteins to CD4 and co-receptor did not correlate with the differences in kinetics of fusion mediated by the three different HIV Envs. However, escape from inhibition by reagents that block gp120-CD4 binding, CD4-induced CXCR4 binding and 6-helix bundle formation, respectively, indicated large difference between HIV-1 and HIV-2 envelope glycoproteins in their CD4-induced rates of engagement with CXCR4. CONCLUSION: The HIV-2 Env proteins studied here exhibited a significantly reduced window of time between the engagement of gp120 with CD4 and exposure of the CXCR4 binding site on gp120 as compared with HIV-1(IIIB )Env. The efficiency with which HIV-2 Env undergoes this CD4-induced conformational change is the major cause of the relatively rapid rate of HIV-2 Env mediated-fusion

    genenames.org: the HGNC resources in 2011

    Get PDF
    The HUGO Gene Nomenclature Committee (HGNC) aims to assign a unique gene symbol and name to every human gene. The HGNC database currently contains almost 30 000 approved gene symbols, over 19 000 of which represent protein-coding genes. The public website, www.genenames.org, displays all approved nomenclature within Symbol Reports that contain data curated by HGNC editors and links to related genomic, phenotypic and proteomic information. Here we describe improvements to our resources, including a new Quick Gene Search, a new List Search, an integrated HGNC BioMart and a new Statistics and Downloads facility

    Data triangulation in a user evaluation of the sealife semantic web browsers

    Get PDF
    There is a need for greater attention to triangulation of data in user-centred evaluation of Semantic Web Browsers. This paper discusses triangulation of data gathered during development of a novel framework for user-centred evaluation of Semantic Web Browsers. The data was triangulated from three sources: quantitative data from web server logs and questionnaire results, and qualitative data from semi-structured interviews. This paper shows how triangulation was essential in validation and completeness of the results, and was indispensable in ensuring accurate interpretation of the results in determining user satisfaction

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    V3 Loop Truncations in HIV-1 Envelope Impart Resistance to Coreceptor Inhibitors and Enhanced Sensitivity to Neutralizing Antibodies

    Get PDF
    The V1/V2 region and the V3 loop of the human immunodeficiency virus type I (HIV-1) envelope (Env) protein are targets for neutralizing antibodies and also play an important functional role, with the V3 loop largely determining whether a virus uses CCR5 (R5), CXCR4 (X4), or either coreceptor (R5X4) to infect cells. While the sequence of V3 is variable, its length is highly conserved. Structural studies indicate that V3 length may be important for interactions with the extracellular loops of the coreceptor. Consistent with this view, genetic truncation of the V3 loop is typically associated with loss of Env function. We removed approximately one-half of the V3 loop from three different HIV-1 strains, and found that only the Env protein from the R5X4 strain R3A retained some fusion activity. Loss of V1/V2 (ΔV1/V2) was well tolerated by this virus. Passaging of virus with the truncated V3 loop resulted in the derivation of a virus strain that replicated with wild-type kinetics. This virus, termed TA1, retained the V3 loop truncation and acquired several adaptive changes in gp120 and gp41. TA1 could use CCR5 but not CXCR4 to infect cells, and was extremely sensitive to neutralization by HIV-1 positive human sera, and by antibodies to the CD4 binding site and to CD4-induced epitopes in the bridging sheet region of gp120. In addition, TA1 was completely resistant to CCR5 inhibitors, and was more dependent upon the N-terminal domain of CCR5, a region of the receptor that is thought to contact the bridging sheet of gp120 and the base of the V3 loop, and whose conformation may not be greatly affected by CCR5 inhibitors. These studies suggest that the V3 loop protects HIV from neutralization by antibodies prevalent in infected humans, that CCR5 inhibitors likely act by disrupting interactions between the V3 loop and the coreceptor, and that altered use of CCR5 by HIV-1 associated with increased sensitivity to changes in the N-terminal domain can be linked to high levels of resistance to these antiviral compounds
    corecore