751 research outputs found
Goldstone Mode Relaxation in a Quantum Hall Ferromagnet due to Hyperfine Interaction with Nuclei
Spin relaxation in quantum Hall ferromagnet regimes is studied. As the
initial non-equilibrium state, a coherent deviation of the spin system from the
direction is considered and the breakdown of this Goldstone-mode
state due to hyperfine coupling to nuclei is analyzed. The relaxation occurring
non-exponentially with time is studied in terms of annihilation processes in
the "Goldstone condensate" formed by "zero spin excitons". The relaxation rate
is calculated analytically even if the initial deviation is not small. This
relaxation channel competes with the relaxation mechanisms due to spin-orbit
coupling, and at strong magnetic fields it becomes dominating.Comment: 8 page
Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet
We report on the calculation of the cyclotron spin-flip excitation (CSFE) in
a spin-polarized quantum Hall system at unit filling. This mode has a
double-exciton component which contributes to the CSFE correlation energy but
can not be found by means of a mean field approach. The result is compared with
available experimental data.Comment: 9 pages, 2 figure
Multistable alignment states in nematic liquid crystal filled wells
Two distinct, stable alignment states have been observed for a nematic liquid crystal confined in a layer with thickness of 12 μm and in square wells with sides of length between 20 and 80 μm. The director lies in the plane of the layer and line defects occur in two corners of the squares. The positions of the defects determine whether the director orientation is across the diagonal or is parallel to two opposite edges of the square. The device is multistable because both the diagonal and parallel states are stable when rotated by multiples of 90° in plane
Bound States in a Quantized Hall Ferromagnet
We report on a study of the quasielectron-quasihole and skyrmion-antiskyrmion
bound states in the quantum Hall regime. The short range attraction
potential is assumed to be determined by a point magnetic impurity. The
calculations are performed within the strong field approximation when the
binding energy and the characteristic electron-electron interaction energy are
smaller than the Landau level spacing. The Excitonic Representation technique
is used in that case.Comment: 8 page
Super-long life time for 2D cyclotron spin-flip excitons
An experimental technique for the indirect manipulation and detection of
electron spins entangled in two-dimensional magnetoexcitons has been developed.
The kinetics of the spin relaxation has been investigated. Photoexcited
spin-magnetoexcitons were found to exhibit extremely slow relaxation in
specific quantum Hall systems, fabricated in high mobility GaAs/AlGaAs
structures, namely, the relaxation time reaches values over one hundred
microseconds. A qualitative explanation of this spin-relaxation kinetics is
presented. Its temperature and magnetic field dependencies are discussed within
the available theoretical framework.Comment: 5 pages, 3 figure
Comment on "Spin relaxation in quantum Hall systems"
W. Apel and Yu.A. Bychkov have recently considered the spin relaxation in a
2D quantum Hall system for the filling factor close to unity [PRL v.82, 3324
(1999)]. The authors considered only one spin flip mechanism (direct
spin-phonon coupling) among several possible spin-orbit related ones and came
to the conclusion that the spin relaxation time due to this mechanism is quite
short: around s at B=10 T (for GaAs). This time is much shorter than
the typical time ( s) obtained earlier by D. Frenkel while considering
the spin relaxation of 2D electrons in a quantizing magnetic field without the
Coulomb interaction and for the same spin-phonon coupling. I show that the
authors' conclusion about the value of the spin-flip time is wrong and have
deduced the correct time which is by several orders of magnitude longer. I also
discuss the admixture mechanism of the spin-orbit interaction.Comment: 1 pag
The Cyclotron Spin-Flip Mode as the Lowest-Energy Excitation of Unpolarized Integer Quantum Hall States
The cyclotron spin-flip modes of spin unpolarized integer quantum Hall states
() have been studied with inelastic light scattering. The energy of
these modes is significantly smaller compared to the bare cyclotron gap. Second
order exchange corrections are held responsible for a negative energy
contribution and render these modes the lowest energy excitations of
unpolarized integer quantum Hall states.Comment: Published: Phys. Rev. B 72, 073304 (2005
Activation Energy in a Quantum Hall Ferromagnet and Non-Hartree-Fock Skyrmions
The energy of Skyrmions is calculated with the help of a technique based on
the excitonic representation: the basic set of one-exciton states is used for
the perturbation-theory formalism instead of the basic set of one-particle
states. We use the approach, at which a skyrmion-type excitation (at zero Lande
factor) is considered as a smooth non-uniform rotation in the 3D spin space.
The result within the framework of an excitonically diagonalized part of the
Coulomb Hamiltonian can be obtained by any ratio [where is the typical Coulomb
energy ( being the magnetic length); is the cyclotron
frequency], and the Landau-level mixing is thereby taken into account. In
parallel with this, the result is also found exactly, to second order in terms
of the (if supposing to be small) with use of the
total Hamiltonian. When extrapolated to the region , our
calculations show that the skyrmion gap becomes substantially reduced in
comparison with the Hartree-Fock calculations. This fact brings the theory
essentially closer to the available experimental data.Comment: 14 pages, 1 figure. to appear in Phys. Rev. B, Vol. 65 (Numbers ~
19-22), 200
- …
