560 research outputs found
Abstract Canonical Inference
An abstract framework of canonical inference is used to explore how different
proof orderings induce different variants of saturation and completeness.
Notions like completion, paramodulation, saturation, redundancy elimination,
and rewrite-system reduction are connected to proof orderings. Fairness of
deductive mechanisms is defined in terms of proof orderings, distinguishing
between (ordinary) "fairness," which yields completeness, and "uniform
fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi
Acceptability with general orderings
We present a new approach to termination analysis of logic programs. The
essence of the approach is that we make use of general orderings (instead of
level mappings), like it is done in transformational approaches to logic
program termination analysis, but we apply these orderings directly to the
logic program and not to the term-rewrite system obtained through some
transformation. We define some variants of acceptability, based on general
orderings, and show how they are equivalent to LD-termination. We develop a
demand driven, constraint-based approach to verify these
acceptability-variants.
The advantage of the approach over standard acceptability is that in some
cases, where complex level mappings are needed, fairly simple orderings may be
easily generated. The advantage over transformational approaches is that it
avoids the transformation step all together.
{\bf Keywords:} termination analysis, acceptability, orderings.Comment: To appear in "Computational Logic: From Logic Programming into the
Future
Web ontology representation and reasoning via fragments of set theory
In this paper we use results from Computable Set Theory as a means to
represent and reason about description logics and rule languages for the
semantic web.
Specifically, we introduce the description logic \mathcal{DL}\langle
4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs
on the left-hand/right-hand side of inclusion axioms, role chain axioms, and
datatypes--which turns out to be quite expressive if compared with
\mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology
Language OWL. Then we show that the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by
reducing it, through a suitable translation process, to the satisfiability
problem of the stratified fragment of set theory, involving variables
of four sorts and a restricted form of quantification. We prove also that,
under suitable not very restrictive constraints, the consistency problem for
\mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is
\textbf{NP}-complete. Finally, we provide a -translation of rules
belonging to the Semantic Web Rule Language (SWRL)
A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets
We give a sharpening of a recent result of Aschenbrenner and Pong about the maximal order type of the term ordering on the finite multisets over a wpo. Moreover we discuss an approach to compute maximal order types of well-partial orders which are related to tree embeddings
Algebraic totality, towards completeness
Finiteness spaces constitute a categorical model of Linear Logic (LL) whose
objects can be seen as linearly topologised spaces, (a class of topological
vector spaces introduced by Lefschetz in 1942) and morphisms as continuous
linear maps. First, we recall definitions of finiteness spaces and describe
their basic properties deduced from the general theory of linearly topologised
spaces. Then we give an interpretation of LL based on linear algebra. Second,
thanks to separation properties, we can introduce an algebraic notion of
totality candidate in the framework of linearly topologised spaces: a totality
candidate is a closed affine subspace which does not contain 0. We show that
finiteness spaces with totality candidates constitute a model of classical LL.
Finally, we give a barycentric simply typed lambda-calculus, with booleans
and a conditional operator, which can be interpreted in this
model. We prove completeness at type for
every n by an algebraic method
AC-KBO Revisited
Equational theories that contain axioms expressing associativity and
commutativity (AC) of certain operators are ubiquitous. Theorem proving methods
in such theories rely on well-founded orders that are compatible with the AC
axioms. In this paper we consider various definitions of AC-compatible
Knuth-Bendix orders. The orders of Steinbach and of Korovin and Voronkov are
revisited. The former is enhanced to a more powerful version, and we modify the
latter to amend its lack of monotonicity on non-ground terms. We further
present new complexity results. An extension reflecting the recent proposal of
subterm coefficients in standard Knuth-Bendix orders is also given. The various
orders are compared on problems in termination and completion.Comment: 31 pages, To appear in Theory and Practice of Logic Programming
(TPLP) special issue for the 12th International Symposium on Functional and
Logic Programming (FLOPS 2014
Homeomorphic Embedding for Online Termination of Symbolic Methods
Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems
Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API
We consider the incremental computation of minimal unsatisfiable cores (MUCs)
of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a
novel API to allow for incremental solving based on clause groups. A clause
group is a set of clauses which is incrementally added to or removed from a
previously solved QBF. Our implementation of the novel API is related to
incremental SAT solving based on selector variables and assumptions. However,
the API entirely hides selector variables and assumptions from the user, which
facilitates the integration of DepQBF in other tools. We present implementation
details and, for the first time, report on experiments related to the
computation of MUCs of QBFs using DepQBF's novel clause group API.Comment: (fixed typo), camera-ready version, 6-page tool paper, to appear in
proceedings of SAT 2015, LNCS, Springe
- …