560 research outputs found

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    Acceptability with general orderings

    Full text link
    We present a new approach to termination analysis of logic programs. The essence of the approach is that we make use of general orderings (instead of level mappings), like it is done in transformational approaches to logic program termination analysis, but we apply these orderings directly to the logic program and not to the term-rewrite system obtained through some transformation. We define some variants of acceptability, based on general orderings, and show how they are equivalent to LD-termination. We develop a demand driven, constraint-based approach to verify these acceptability-variants. The advantage of the approach over standard acceptability is that in some cases, where complex level mappings are needed, fairly simple orderings may be easily generated. The advantage over transformational approaches is that it avoids the transformation step all together. {\bf Keywords:} termination analysis, acceptability, orderings.Comment: To appear in "Computational Logic: From Logic Programming into the Future

    Web ontology representation and reasoning via fragments of set theory

    Full text link
    In this paper we use results from Computable Set Theory as a means to represent and reason about description logics and rule languages for the semantic web. Specifically, we introduce the description logic \mathcal{DL}\langle 4LQS^R\rangle(\D)--admitting features such as min/max cardinality constructs on the left-hand/right-hand side of inclusion axioms, role chain axioms, and datatypes--which turns out to be quite expressive if compared with \mathcal{SROIQ}(\D), the description logic underpinning the Web Ontology Language OWL. Then we show that the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is decidable by reducing it, through a suitable translation process, to the satisfiability problem of the stratified fragment 4LQSR4LQS^R of set theory, involving variables of four sorts and a restricted form of quantification. We prove also that, under suitable not very restrictive constraints, the consistency problem for \mathcal{DL}\langle 4LQS^R\rangle(\D)-knowledge bases is \textbf{NP}-complete. Finally, we provide a 4LQSR4LQS^R-translation of rules belonging to the Semantic Web Rule Language (SWRL)

    A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets

    Get PDF
    We give a sharpening of a recent result of Aschenbrenner and Pong about the maximal order type of the term ordering on the finite multisets over a wpo. Moreover we discuss an approach to compute maximal order types of well-partial orders which are related to tree embeddings

    Algebraic totality, towards completeness

    Get PDF
    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans B{\mathcal{B}} and a conditional operator, which can be interpreted in this model. We prove completeness at type Bn→B{\mathcal{B}}^n\to{\mathcal{B}} for every n by an algebraic method

    AC-KBO Revisited

    Get PDF
    Equational theories that contain axioms expressing associativity and commutativity (AC) of certain operators are ubiquitous. Theorem proving methods in such theories rely on well-founded orders that are compatible with the AC axioms. In this paper we consider various definitions of AC-compatible Knuth-Bendix orders. The orders of Steinbach and of Korovin and Voronkov are revisited. The former is enhanced to a more powerful version, and we modify the latter to amend its lack of monotonicity on non-ground terms. We further present new complexity results. An extension reflecting the recent proposal of subterm coefficients in standard Knuth-Bendix orders is also given. The various orders are compared on problems in termination and completion.Comment: 31 pages, To appear in Theory and Practice of Logic Programming (TPLP) special issue for the 12th International Symposium on Functional and Logic Programming (FLOPS 2014

    Homeomorphic Embedding for Online Termination of Symbolic Methods

    No full text
    Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems

    Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API

    Full text link
    We consider the incremental computation of minimal unsatisfiable cores (MUCs) of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a novel API to allow for incremental solving based on clause groups. A clause group is a set of clauses which is incrementally added to or removed from a previously solved QBF. Our implementation of the novel API is related to incremental SAT solving based on selector variables and assumptions. However, the API entirely hides selector variables and assumptions from the user, which facilitates the integration of DepQBF in other tools. We present implementation details and, for the first time, report on experiments related to the computation of MUCs of QBFs using DepQBF's novel clause group API.Comment: (fixed typo), camera-ready version, 6-page tool paper, to appear in proceedings of SAT 2015, LNCS, Springe
    • …
    corecore