334 research outputs found

    Analytical method for perturbed frozen orbit around an Asteroid in highly inhomogeneous gravitational fields : A first approach

    Get PDF
    This article provides a method for nding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the heterogeneous body is rstly stated, in polar-nodal coordinates, which takes into account the coecients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coefficients. The project has been developed in collaboration with the European Space Agency (ESA)

    Non-linear stability in photogravitational non-planar restricted three body problem with oblate smaller primary

    Full text link
    We have discussed non-linear stability in photogravitational non-planar restricted three body problem with oblate smaller primary. By photogravitational we mean that both primaries are radiating. We normalised the Hamiltonian using Lie transform as in Coppola and Rand (1989). We transformed the system into Birkhoff's normal form. Lie transforms reduce the system to an equivalent simpler system which is immediately solvable. Applying Arnold's theorem, we have found non-linear stability criteria. We conclude that L6L_6 is stable. We plotted graphs for (ω1,D2).(\omega_1, D_2). They are rectangular hyperbola.Comment: Accepted for publication in Astrophysics & Space Scienc

    Production of trans-Neptunian binaries through chaos-assisted capture

    Full text link
    The recent discovery of binary objects in the Kuiper-belt opens an invaluable window into past and present conditions in the trans-Neptunian part of the Solar System. For example, knowledge of how these objects formed can be used to impose constraints on planetary formation theories. We have recently proposed a binary-object formation model based on the notion of chaos-assisted capture. Here we present a more detailed analysis with calculations performed in the spatial (three-dimensional) three- and four-body Hill approximations. It is assumed that the potential binary partners are initially following heliocentric Keplerian orbits and that their relative motion becomes perturbed as these objects undergo close encounters. First, the mass, velocity, and orbital element distribu- tions which favour binary formation are identified in the circular and elliptical Hill limits. We then consider intruder scattering in the circular Hill four-body problem and find that the chaos-assisted capture mechanism is consistent with observed, apparently randomly distributed, binary mutual orbit inclinations. It also predicts asymmetric distributions of retrograde versus prograde orbits. The time-delay induced by chaos on particle transport through the Hill sphere is analogous to the formation of a resonance in a chemical reaction. Implications for binary formation rates are considered and the 'fine-tuning' problem recently identified by Noll et al. (2007) is also addressed.Comment: submitted to MNRA

    Families of Canonical Transformations by Hamilton-Jacobi-Poincar\'e equation. Application to Rotational and Orbital Motion

    Full text link
    The Hamilton-Jacobi equation in the sense of Poincar\'e, i.e. formulated in the extended phase space and including regularization, is revisited building canonical transformations with the purpose of Hamiltonian reduction. We illustrate our approach dealing with orbital and attitude dynamics. Based on the use of Whittaker and Andoyer symplectic charts, for which all but one coordinates are cyclic in the Hamilton-Jacobi equation, we provide whole families of canonical transformations, among which one recognizes the familiar ones used in orbital and attitude dynamics. In addition, new canonical transformations are demonstrated.Comment: 21 page

    Canonical Transformations and Renormalization Group Invariance in the presence of Non-trivial Backgrounds

    Full text link
    We show that for a SU(N) Yang-Mills theory the classical background-quantum splitting is non-trivially deformed at the quantum level by a canonical transformation with respect to the Batalin-Vilkovisky bracket associated with the Slavnov-Taylor identity of the theory. This canonical transformation acts on all the fields (including the ghosts) and antifields; it uniquely fixes the dependence on the background field of all the one-particle irreducible Green's functions of the theory at hand. The approach is valid both at the perturbative and non-perturbative level, being based solely on symmetry requirements. As a practical application, we derive the renormalization group equation in the presence of a generic background and apply it in the case of a SU(2) instanton. Finally, we explicitly calculate the one-loop deformation of the background-quantum splitting in lowest order in the instanton background.Comment: 24 pages, 1 figur

    The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    Full text link
    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In attitude mechanics, osculation is lost when an angular-velocity-dependent disturbance is plugged in the standard dynamical equations for the Andoyer elements. We encounter exactly this situation in the theory of Earth rotation, because this theory contains an angular-velocity-dependent perturbation (the switch from an inertial frame to that associated with the precessing ecliptic of date). While the osculation loss does not influence the predictions for the figure axis of the planet, it considerably alters the predictions for the instantaneous spin-axis' orientation. We explore this issue in great detail

    NIMASTEP: a software to modelize, study and analyze the dynamics of various small objects orbiting specific bodies

    Full text link
    NIMASTEP is a dedicated numerical software developed by us, which allows one to integrate the osculating motion (using cartesian coordinates) in a Newtonian approach of an object considered as a point-mass orbiting a homogeneous central body that rotates with a constant rate around its axis of smallest inertia. The code can be applied to objects such as particles, artificial or natural satellites or space debris. The central body can be either any terrestrial planet of the solar system, any dwarf-planet, or even an asteroid. In addition, very many perturbations can be taken into account, such as the combined third-body attraction of the Sun, the Moon, or the planets, the direct solar radiation pressure (with the central body shadow), the non-homogeneous gravitational field caused by the non-sphericity of the central body, and even some thrust forces. The simulations were performed using different integration algorithms. Two additional tools were integrated in the software package; the indicator of chaos MEGNO and the frequency analysis NAFF. NIMASTEP is designed in a flexible modular style and allows one to (de)select very many options without compromising the performance. It also allows one to easily add other possibilities of use. The code has been validated through several tests such as comparisons with numerical integrations made with other softwares or with semi-analytical and analytical studies. The various possibilities of NIMASTEP are described and explained and some tests of astrophysical interest are presented. At present, the code is proprietary but it will be released for use by the community in the near future. Information for contacting its authors and (in the near future) for obtaining the software are available on the web site http://www.fundp.ac.be/en/research/projects/page_view/10278201/Comment: Astronomy & Astrophysics - Received: 25 November 2011 / Accepted: 27 February 2012 -- 14 pages, 4 figure

    Resonances in a spring-pendulum: algorithms for equivariant singularity theory

    Get PDF
    A spring-pendulum in resonance is a time-independent Hamiltonian model system for formal reduction to one degree of freedom, where some symmetry (reversibility) is maintained. The reduction is handled by equivariant singularity theory with a distinguished parameter, yielding an integrable approximation of the Poincaré map. This makes a concise description of certain bifurcations possible. The computation of reparametrizations from normal form to the actual system is performed by Gröbner basis techniques.

    The Moyal-Lie Theory of Phase Space Quantum Mechanics

    Get PDF
    A Lie algebraic approach to the unitary transformations in Weyl quantization is discussed. This approach, being formally equivalent to the \star-quantization, is an extension of the classical Poisson-Lie formalism which can be used as an efficient tool in the quantum phase space transformation theory.Comment: 15 pages, no figures, to appear in J. Phys. A (2001

    Synchronization of perturbed non-linear Hamiltonians

    Full text link
    We propose a new method based on Lie transformations for simplifying perturbed Hamiltonians in one degree of freedom. The method is most useful when the unperturbed part has solutions in non-elementary functions. A non-canonical Lie transformation is used to eliminate terms from the perturbation that are not of the same form as those in the main part. The system is thus transformed into a modified version of the principal part. In conjunction with a time transformation, the procedure synchronizes the motions of the perturbed system onto those of the unperturbed part.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42559/1/10569_2004_Article_BF00692993.pd
    corecore